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Live as if you were to die tomorrow.
Learn as if you were to live forever.

Mahatma Gandhi, 1869 – 1948
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lende personen.
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carrière aan onze schitterende faculteit. Ook professor Jan Vanthienen heeft
voor mij een belangrijke rol gespeeld de afgelopen 3 jaren. Het feit dat zijn
deur open stond voor eenieder die vragen had, heb ik sterk geapprecieerd, en
de goede samenwerking op vlak van onderzoek, bekroond met een DSS paper,
en studie begeleiding (weka sessies) zal ik steeds onthouden. Professor David
Martens is een waar genoegen om in je commissie te hebben; daar hij zelf re-
cent nog doctoraatsstudent was, weet hij maar al te goed de mogelijke valkuilen
en verlokkingen eigen aan een doctoraatstraject, en was hij steeds bereid dit
te delen met anderen. Ook de OR conferentie te Egham, waarbij wij, doctor-
aatsstudenten, de prijs in de wacht sleepten voor het team met onder andere
David en Bart zal steeds een aangename herinnering blijven.

I had also the utmost pleasure to welcome Prof. Bojan Cukic and Dr.
Thomas Ostrand to my commission. Both can be regarded as experts in the do-
main of empirical software engineering, and cannot be thanked enough for their
willing support in this endeavor. Special thanks goes out for the hospitable
reception at the West Viriginia University, homestead of Prof. Cukic, and Prof.
Tim Menzies, editor in chief of some of my articles related to fault prediction.



Het schrijven van een dankwoord is zowel een aangename afsluiter van een
succesvol doctoraat, als tevens een risicovolle onderneming aangezien niemand
van de collega’s, zonder dewelke mijn verblijf in HOG 03.120 nooit zo aangenaam
zou geweest zijn, mag vergeten worden. Vooreerst zou ik de ZAP staf willen
danken; als student nog Prof. Put en Prof. Lemahieu, staan deze nu te boek als
bijzonder fijne, en aangename mensen die ik via mijn opvolging zeker nog zal
ontmoeten. Ook de mede doctoraatsstudenten moeten zeker vermeld worden.
Een aantal van hen kende ik reeds voor aanvang: Tom, Jochen en Filip. De
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icap/dankzij zijn kracht als Anderlecht supporter, het ook tot in zaalvoetbal
team Dejaeger heeft geschopt. Tom tenslotte stond altijd klaar met raad en
daad als het ging over vechtsporten, en karate in het bijzonder. Uiteraard zijn
er nog een heel aantal andere collega’s die mijn doctoraatsjaren gekleurd hebben.
Mijn bureau heb ik in de loop der jaren gedeeld met Wouter, die nu het mooie
weer maakt bij de Dexia bad bank, en met Helen. Deze laatste is actief in
het onderzoeksdomein van data quality, alwaar het bekende six axis framework
aldus opgeld kan maken. Het heeft even geduurd voor sommige collega’s het
merkten, maar de vorm van haar buik geeft tegenwoordig onmiskenbaar aan
dat er binnenkort een kleine Helen in onze faculteit zal rond hossen. Philippe,
onze Antwerpenaar van dienst, verdient ook een speciale vermelding; benoemd
tot chef koffiedrager, was hij steevast bereid tot een koffiepauze om eens de
gedachten te verzetten. Ook met Seppe en Thomas heb ik steeds goed kunnen
samen werken, getuige onze gemeenschappelijke pennenvruchten. Mister ticket-
matic Alex moet ik dan weer feliciteren met zijn immer relaxte houding, zelfs ten
tijde van IWT deadlines. Als je Jonas kon spotten, bleek ook hij een erg leuke
collega te zijn, die zeker over impact factoren en journals steeds iets interessant
te zeggen had. Ook Pieter, Gayane, Flavius en Willem (die helaas voortijdig
gestopt is) stonden steeds paraat voor een babbeltje, of voor assistentie bij een
of ander (LATEX) probleem. Het woord opvolging is al een aantal malen gevallen
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die ik reeds heb mogen ontmoeten gedurende september. Aimée, Veronique en
Libo, jullie gaan dat zeker super doen!

Anderzijds zijn er ook vanuit de familie Dejaeger reeds inspanningen in deze
richting gedaan. Broer Stijn is sinds een tweetal jaren in mijn voetsporen getre-
den als handelsingenieur in de beleidsinformatica en ik hoop dat hij deze studies
met evenveel plezier als mij kan afronden. Hem moet ik specifiek danken om
mij te introduceren binnen ‘zijn’ voetbalwereld, en voor zijn ondersteuning bij
mijn academische en trainers carrière. Mijn zus Marian houdt onze eer dan
weer hoog binnen de medische wereld, en is echt een zus om trots op te zijn. Zij
en haar verloofde Steven zorgden voor de nodige rotaract noot de afgelopen 3
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Samenvatting

Data is overal om ons heen. Supermarkten houden bij welke artikelen door wie
wanneer zijn gekocht, een bankkaart betaling geeft aanleiding tot een nieuwe
observatie in de database van je favoriete financiële instelling, en ook de details
van ieder GSM gesprek worden opgeslagen door telecommunicatie operatoren.
Door de toenemende informatisering kan verwacht worden dat deze vloedgolf
van data niet snel zal opdrogen. Data captatie is echter maar een eerste stap,
en het gehele proces van data captatie en verrijking, samen met de extractie
van verborgen patronen uit deze data en bijhorende validatie wordt aangeduid
met de term Knowledge Discovery in Databases (KDD). Machine learning en
data mining zijn twee andere termen die vaak worden gehanteerd in dit opzicht
en refereren naar de gereedschapskist die de onderzoeker tot zijn beschikking
heeft in de zoektocht naar verborgen patronen in de data. In dit doctoraat
zullen we dieper ingaan op de rol die machine learning kan spelen binnen soft-
ware engineering, waarbij we ook steeds oog hebben voor de andere stappen
binnen het KDD proces. Software engineering is op zijn beurt het onderzoeks-
domein dat focust op het opleveren van software artefacten en alle aspecten die
hiermee gerelateerd zijn. Het is op het kruispunt van deze twee zeer actieve
onderzoeksdomeinen dat we dit doctoraat kunnen positioneren.

Motivatie

Er is een boutade uit 1986 die gaat als volgt:

‘Bridges are normally built on-time, on-budget and do not fall down.
On the other hand, software never comes in on-time or on-budget.

In addition, it always breaks down.’

Helaas zit er vandaag nog steeds een kern van waarheid in deze uitspraak, zoals
internationaal onderzoek ook herhaaldelijk heeft aangewezen. In 1994 stelde een
onderzoeksrapport van de Standish Group dat commerciële software projecten
gemiddeld met 189% over budget gaan. Meer recente schattingen van deze or-
ganisatie uit 2008 geven aan dat de kosten gemiddeld 54% hoger uitvallen dan
gebudgetteerd, terwijl 24% van alle software projecten zelfs volledig falen. Ook
dichter bij huis vinden we voorbeelden van projecten die grote vertragingen
en budget overschrijdingen opliepen zoals het project ‘Speer’ van het Neder-
landse leger, of zelfs projecten die voortijdig gestopt werden, zoals ‘Feniks’ dat
de Belgische justitie het informatica tijdperk moest binnenloodsen. Deze vast-
stelling wordt als uitgangspunt genomen voor onderliggende tekst, waarin we
het gebruik van machine learning onderzoeken ter ondersteuning van het soft-
ware ontwikkelproces. Specifiek gaan we in op twee deeldomeinen van software
engineering: software effort estimation en software fault prediction.
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Overzicht van de onderzoeksvragen

Het inschatten van de benodigde ontwikkelingstijd

Een eerste luik van dit doctoraat behelst het inschatten van de benodigde on-
twikkeltijd van nieuwe software projecten, zie ook hoofdstuk 3. Als we de eerder
geciteerde cijfers in acht nemen, kunnen we stellen dat dit aspect zeker nog
onze aandacht verdiend. Een correcte inschatting maken van de ontwikkeltijd
is immers cruciaal voor de planning en budgettering van projecten. Historisch
gezien is het steunen op de mening van één of meerdere experts de oudste en
nog steeds vaak gehanteerde strategie bij het maken van zulke inschattingen.
Er zijn echter een aantal duidelijke nadelen hieraan verbonden, zoals de neig-
ing van mensen om extreme gevallen als norm te beschouwen, en de problemen
die mogelijks ontstaan indien de expert het bedrijf verlaat. Als reactie hierop
zijn er een aantal alternatieven voorgesteld die op meer objectieve wijze infor-
matie van reeds voltooide projecten in rekening nemen, zoals het cocomo model
dat op basis van de hoeveelheid te ontwikkelen code en andere projectkarak-
teristieken een schatting maakt. Andere methoden steunen op het gebruik van
functiepunten, een concept dat de hoeveelheid gevraagde ‘functionaliteit’ in een
software project kwantificeert. Recentelijk werd ook het gebruik van machine
learning onderzocht, maar tot op heden was het onduidelijk in hoeverre dit een
toegevoegde waarde kon bieden aan het gamma van reeds bestaande methoden.
In dit eerste luik onderzoeken we dan ook of, en zo ja, welke machine learning
techniek de meest geschikte is voor het schatten van de ontwikkelinspanning, en
dit op een voorheen ongeziene schaal. Ook de begrijpbaarheid van modellen is
een aspect dat onze aandacht verdiend aangezien deze modellen als input dienen
tot budgetteringsprocessen en aldus een directe impact kunnen hebben op de
gepercipieerde prestaties van ontwikkelaars. Dit werd ook in meer detail be-
sproken in een conferentie publicatie die echter, wegens plaatsgebrek, niet werd
opgenomen in deze doctorale tekst.



Het screenen op fouten

Software testing is een activiteit die tot 60% van het totale ontwikkelbudget kan
kosten, en verwaarlozing hiervan kan leiden tot grote, onverwachte uitgaven na
het opleveren van het project. Het screenen van de broncode om zo de meer
foutengevoelige gebieden te identificeren kan een belangrijke bijdrage leveren
tot het reduceren van deze uitgaven. Het tweede luik van dit doctoraat (hoofd-
stukken 4, 5 en 6) benadert dit probleem door opnieuw gebruik te maken van
diverse machine learning technieken. Er dient immers opgemerkt te worden dat
bijvoorbeeld expertpanels vaak geen goed zicht hebben op de volledige broncode
van grotere projecten en dat het bovendien als te tijdsintensief wordt ervaren
om op voldoende fijne granulariteit deze code te screenen. Hierdoor kan ma-
chine learning als het belangrijkste hulpmiddel gezien worden binnen software
fault prediction. In een eerste deel onderzoeken we of meer begrijpbare bayesi-
aanse modellen van waarde kunnen zijn, en houden we ook rekening met de
context waarin een project wordt ontwikkeld. Binnen dit onderzoeksdomein
wordt er vaak gebruik gemaakt van data die gecollecteerd werd door de NASA.
In een tweede deel beschouwen we van nabij deze data en sporen we mogelijke
kwaliteitsproblemen op die aanwezig zijn in deze data. Tenslotte beschouwen we
een voorbeeld van het volledige KDD proces binnen software engineering. Meer
bepaald rapporteren we de resultaten van een case studie van het Android plat-
form waarin we onder andere onderzoeken of het mogelijk is om data overheen
meerdere releases te gebruiken voor predictie doeleinden.

Besluit

Veel van de aspecten die behandeld zijn in dit doctoraat kunnen gezien worden
als symptomen van het feit dat software ontwikkeling nog steeds een groten-
deels mensgedreven proces is, en hoewel er pogingen ondernomen worden om de
menselijke factor deels uit te schakelen (zie bijvoorbeeld het gebruik van code
generatoren), is het onwaarschijnlijk dat dit zal lukken op korte termijn. Tot
het zover is, zullen de onderwerpen van dit doctoraat hun waarde behouden,
en wellicht zelfs aan belang winnen door de steeds toenemende informatisering
van onze samenleving. Echter, zoals Professor Tim Menzies me ook vertelde op
mijn bezoek naar Morgan Town, ‘the search for a theory which can summarize
everything in software engineering is unlikely to be fruitful; instead, we should
focus on specific aspects which can make a difference’.



Bridges are normally built on-time,
on-budget and do not fall down.
On the other hand, software never
comes in on-time or on-budget.
In addition, it always breaks down.

Alfred Spector, 1986 1
Introduction

1.1 Context and problem definition

Alongside with the advent of the first programmable electronic computing de-
vices in the early forties, the first software was developed. The first such machine
was the Colossus Mark I which was developed in the UK to decode encrypted
messages during WW II. Being very complex and expensive devices, these com-
puting devices or computers were typically purpose-built machines requiring
several skilled engineers to operate and maintain the computer1. The past 65
years have witnessed the evolution from purpose-specific, room-filling machines
to portable and versatile computers, also coinciding with an enormous growth
of the software development industry. In order to put the importance of the
software development industry into perspective, the following numbers should
be considered. Gartner, an information technology research and advisory firm,
estimated that the worldwide enterprize software development market netted
$ 176.3 billion in 2008 while in 2010, the total revenue already accounted for
$ 244 billion. For 2011, Gartner forecasts a further increase of 9.5% for a total of
$ 267 billion dollar [116]. Moreover, market researcher Datamonitor concluded
that the global worldwide software industry valued $ 303.8 billion in 2008. Over
time, the software development sector has also witnessed several large mergers
and acquisitions (M&A’s), strengthening the position of large developers. Ta-
ble 1.1 provides data on a number of large M&A’s, listing the estimated value
of the target company in the last column. The institute of Mergers, Acquisi-
tions and Alliances, a specialized research institution, acknowledged over 40,000
M&A’s over the past 22 years with a total known value of close to $ 1,500 bil-
lion2. Another example is the Initial Public Offering of the social networking
company Facebook Inc. on the 18th of May 2012, with a peak market capital-
ization of over $ 104 billion. Furthermore, as software development remains to
a large extend a creative process which is only partially automatable, a large
number of people are employed in this sector. The US Bureau of Labor Statis-

1Note that the first programmable computing devices predates the Colossus Mark I, being
perceived by Charles Babbage in the 19th century. However, these machines were mechanical
in nature and were never actually built due to funding problems [333].

2www.imaa-institute.org
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Buyer Target M&A completion date Total worth

Microsoft Hotmail 31/12/1997 $ 500 million

Microsoft Visio Corporation 1/7/2000 $ 1.375 billion

Ebay Paypal 14/10/2002 $ 1.5 billion

Oracle Peoplesoft 13/12/2004 $ 10.3 billion

Symantec Veritas 16/12/2004 $ 13.5 billion

Yahoo Flickr 20/9/2007 $ 1.6 billion

Activision Vivendi Games 9/7/2008 $ 18.8 billion

Oracle Sun microsystems 20/4/2009 $ 7.4 billion

Table 1.1: Examples of large M&A’s in software / ICT industry

tics stated that a total of 333,620 persons were employed in the US as computer
programmer in the period of May 20103 while the National Bureau of Statistics
of China estimated that a total of 1,150,000 students graduated from Chinese
technical schools in 2009 [207]. Research indicated that the occupation of soft-
ware engineer is amongst the fastest growing occupations in the United States
[135].

It should be acknowledged that software engineering in fact covers a broad
range of activities and could be defined as ‘the systematic application of scientific
and technological knowledge, through the medium of sound engineering princi-
ples, to the production of computer programs, and to the requirements defini-
tion, functional specification, design description, program implementation, and
test methods that lead up to this code’ [194]4. Empirical software engineering
can be regarded as a subdomain hereof in which quantitative data are collected,
processed and analyzed with the purpose of supporting the development of soft-
ware. Software developing companies need to take several resources into account
such as programmers’ time, computer equipment and office space. Typically,
considering the tremendous increase in storage capacity and computing power,
the latter two are subordinate, requiring project management to focus on the
planning and support of software developers. As a response hereto, various re-
search tracks aiming at assisting project management and individual developers
have been investigated, including software effort prediction, software fault pre-
diction, bug pattern mining and reliability modeling. In this dissertation, the
focus lies on two important topics in the field of empirical software engineering:
software effort prediction and software fault prediction.

The first considers software projects as a whole, defining project-wide char-
acteristics to come up with an upfront estimate of the total required software

3www.bls.gov, Standard Occupational Classification (SOC) code 151131.
4The term software engineering was first used in academic literature during the NATO

software engineering conferences held in 1968 in Garmish, Germany and in 1969 in Brussels,
Belgium.
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development time, typically expressed in terms of man months or an equivalent
metric. Several estimation approaches have been developed and the investiga-
tion of these methods is often referred to as software effort or software cost
prediction research.

The second topic, software fault prediction, zooms in on the actual source
code being developed during the project to identify fault prone code to guide
testing efforts. By looking at source code characteristics (e.g. static code fea-
tures) and taking other information such as developer and/or code churn metrics
into account, mathematical models identifying fault prone modules can be con-
structed.

In the following sections, both topics are first positioned in a typical project
development life cycle. Then, the paradigm of open source software development
is elaborated upon and its relevance to both topics is discussed. Next, the topic
of software effort prediction is further introduced followed by software fault
prediction. The specific research questions are also presented at the end of each
section. This chapter concludes with an overview of the results published in the
context of this dissertation.

1.2 Software development models

In order to keep larger software projects manageable, a development methodol-
ogy can be followed. A prevalent methodology is the waterfall model proposed
by W. Royce in 1970 [270]. The waterfall model is a development methodology
which starts by collecting and analyzing the project requirements, followed by
a design and a coding phase. Sometimes, the waterfall model constitutes an
additional preliminary design phase in which the entire process is explored in
miniature to verify critical design areas. The waterfall model also acknowledges
the importance of a (separate) testing step and the need for post deployment
maintenance activities. These last two steps are acknowledged to be a major
expense in the overall development budget. The waterfall model has often been
criticized as being too inflexible and too heavy weight, mandating the comple-
tion of each phase before commencing the next. For instance, it is assumed that
during requirement analysis, all desired user functionalities are to be captured;
i.e. the set of requirements is considered to be frozen. In many cases however,
upon receiving a functional prototype, the end user requirements turn out to be
not fully understood or are subjected to change. Moreover, design choices made
early in the project might cause implementation issues later during development.
While Royce already acknowledged that software design is seldom confined to
the successive steps outlined by his development model, a number of alterna-
tive development methodologies have been proposed, including Rational Unified
Process (RUP) [191], Spiral development [37] and eXtreme Programming (XP)
[28]. However, the waterfall model is still often adopted in larger projects, as is
suggested by recent data collection efforts [148]. The waterfall model is shown
in Fig. 1.1 and the topics discussed in this dissertation are positioned within
this model. It can be seen that effort estimation is typically performed at the

3



beginning of the project, after completing the requirements phase. The results
of the requirement phase can serve as an input to estimate the project size
and complexity using for instance a functional sizing based approach which are
subsequently used as inputs for software effort modeling [5]. Fault prediction is
typically effected in between the coding and testing phase. However, e.g. during
the coding phase, the output of fault prediction models can already be used to
indicate fault prone regions in the source code, while estimating development
effort can be delayed and/or repeated later during project development. Note
that irrespective of the development methodology, an upfront estimation of the
development effort is often a managerial requirement for staff allocation and
productivity benchmarking with other projects and/or other software develop-
ers [71]. Software testing is also a crucial, but sometimes neglected activity as
often no direct added value is generated. Testing can take up to 60% of the
total development cost and in some cases, e.g. for mission critical software, this
percentage is reported to be even higher [130,270].

System requirement

Software requirements

Analysis

Program design

Coding

Testing

Operations

Software development

life cycle

Software Effort

Prediction

Software Fault

Prediction

Figure 1.1: Positioning of both research topics in the waterfall model

1.2.1 Open source software

A paradigm which is gaining momentum in the software development industry
is that of open source software (OSS) in which the source code is made publicly
available free of charge (and consequently, commercial software is sometimes
referred to as closed source software or CSS). Depending on the software li-
cence, one is allowed to copy, modify and redistribute the source code for (non)
commercial purposes. The open source initiative (OSI)5 lists a large number
of OSS licenses, the GNU general public licence (GPL) being one of the most
frequently used. This particular licence was issued by a second organization, the

5www.opensource.org
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free software foundation6 which, similar to the OSI, supports the development
of OSS and GNU projects in particular. The GPL states that anybody may
adapt or even resell source code, on the premise that others are granted the
same rights and all contributors are mentioned. Other licences might impose
additional restrictions.

Provider # Projects # Developers

Berlios 4.750 50.512
www.berlios.de
sample hosted projects: SIM-IM, FreeNX

Eclipse Foundation Unknown Unknown
www.eclipse.org
sample hosted projects: Eclipse, Mylyn

github 2.550.801 927.117
www.github.com
sample hosted projects: jQuery, reddit

GNU Savannah 3.363 52.969
www.savannah.gnu.org
sample hosted projects: emacs, GNU octave

Javaforge 540 27.000
www.javaforge.com
sample hosted projects: KETTLE, OpenModelSphere

SourceForge 303.839 Unknown
www.sourceforge.net
sample hosted projects: Emule, Azureus, FileZilla

Tigris.org 692 Unknown
www.tigris.org
sample hosted projects: Scarab, Subversion, ArgoUML

Table 1.2: Overview of OSS hosting sites

Typically, OSS is developed by geographically distributed teams of volun-
teers who do not receive any direct compensation. As such, projects often lack
any form of central project management and violate also other well established
software development practices such as the development of software in small
teams, the reenforcement of specific development guidelines, or the need for re-
quirement analyses [131,307]. It should be noted that the open source software
development model does not exist. One of the first discussions on the differences
between the development of various OSS projects can be found in the work of
E. Raymond, who compares the development of Linux with the development

6www.fsf.org
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practices of other open source projects. He states that the development of some
open source projects resembles the building of a cathedral. In these projects,
there is a small and collaborating group of programmers who develop software
without releasing any beta version to the public. These programmers lean more
towards how commercial software is built, adhering for instance to a waterfall
development methodology using tight organizational structures and centralized
planning. On the other hand, the Linux project accepts contributions from
anybody, releasing all modifications and versions to the public. This sort of
development is compared to a bazaar where numerous developers with different
agendas and approaches are cooperating with each other [266]. The open source
community offers a number of collaboration platforms which can be used to host
software projects. Table 1.2 lists a number of such OSS platforms. Note that
larger OSS projects often do not use these platforms but instead are hosted
on separate websites dedicated to the project. Examples hereof are the GCC
compiler for the GNU project, the Andoid platform which is supported by the
Android Open Source Project, the development of Linux and both the FreeBSD
and OpenBSD desktop environments.

Especially the development of ‘bazaar-like’ open source projects is often bug
driven, in the sense that users make requests or locate bugs which are then
used as input during development. Fig. 1.2 provides an overview of the different
actors in this process. First, a user posts a bug or feature request on a forum
or directly on the appropriate bug tracker (possibly via a link provided in the
application) (1). The user has to provide details such as whether it is a fea-
ture request or a bug [32]. As this dissertation focuses on fault prediction, only
bugs are considered. Typical bug trackers in use by open source projects are
Bugzilla, Issuezilla, Trac, MantisBT and Scarab. As users might file reports on
bugs already present in the bugtracker, e.g. Bugzilla incorporates an automatic
duplicate bug detection process, presenting a list of possible matches upon sub-
mission [259]. Once the bug report is filed, a senior developer will assign it to
other developers, depending on their area of expertise; this is also referred to as
bug triage (2) [11, 66]. The assignee will consult the information available on
the tracker and possibly consult other developers through mailing lists or other
means of communication (3). Often, the latest version of the source code can
be obtained from a content management system (4). Such source code reposito-
ries together with bug tracking services are typically offered by OSS platforms.
Possible content management systems include CVS, SVN, GIT and Mercurial.
After locating the appropriate source code and checking out this code, modifica-
tions can be made. These modifications need to be reviewed and the developer
will often release an initial version of the modifications (5). These modifications
will be further scrutinized by other developers, possibly making use of mailing
lists or the bug tracking service (6). Finally, the update is incorporated into
the application and the bug request is closed (7) [166].

6



End user
Senior

developer

Developer

Developer

Developer

Bug tracker

Community

forum

Mailing list

submit bugbug triage

bug assignment

Content

management

system

debugging

checkout

dev.

release

production release

126

4

5

7

consulting

mailinglist

3

Figure 1.2: Open source software development

1.3 Software effort prediction

In this section, the field of software effort prediction is further elaborated upon
by first providing an overview of the key academic research groups in this domain
followed by a more in depth look into how software effort prediction is done.
Finally, the research objectives are presented.

1.3.1 Research landscape

As the issue of planning and budgeting software projects is often a very chal-
lenging one, it has attracted research interest from various domains including
software engineering, managerial sciences [1], and cognitive sciences [249]. Due
to the large number of publications from various viewpoints, a more systematic
and focussed search through the literature seems required; in this thesis, we
will focus on how to predict development effort using mathematical techniques,
putting less emphasis on related topics such as software size estimation (e.g.
function point analysis [2, 5]) or expert driven estimation techniques [160].

To provide an overview of the software effort prediction literature, a query
was entered into several academic publication repositories. Academic papers
are stored and indexed to allow other researchers to more easily search for
relevant papers. Note that the ease of which papers can be located and re-
trieved has inspired researchers to write comprehensive literature review papers
[52,54,121,160,163,330]. These papers are often amongst the most valuable pa-
pers to other researchers as they discuss the current state of the art in a specific
topic. Depending on the domain, typical indexing sites include Science Direct,
CiteSeer, ISI Web of Knowledge, PubMed and Scopus. In this introductory
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chapter, two such indexes have been queried, i.e. Science Direct7 and ISI Web
of Knowledge8, and the information retrieved from these indexes was parsed
into a MySQL database. The following query has been submitted to both Sci-
ence Direct and ISI Web of Knowledge: ‘(software effort or software
cost) and (estimation or prediction)’. Table 1.3 provides the number of
journal papers and conference publications that were outputted by both indexes
on 22/08/2011. Note that Science Direct only contains information on Elsevier
journal publications and thus contained no conference publications. Some as-
sumptions were made while parsing the publications and storing them into the
database. Each publication is assumed to have a unique title; if a publication
with exactly the same title already exists in the database, no new entry was
created. Since conference publications are sometimes extended to journal publi-
cations which are typically regarded as containing more established results, the
loading sequence of the database was adjusted accordingly by first collecting
journal publications and adding conference publications in a second step. A
second assumption relates to the author names. Some publications were found
not to list the complete author names. Instead, the first name was occasionally
abbreviated by the first letter. It was assumed that if the second name and the
first letter of the first name match, these two authors are the same person. For
instance, K. Dejaeger is assumed to be the same person as Karel Dejaeger or
Koen Dejaeger. Note that in the literature, a number of more advanced algo-
rithms for name matching have been proposed, taking context or other meta
data into account [124]. However, both indexes do not provide such additional
meta data and preliminary analysis indicated double names to occur only very
sporadically, relegating this issue. Furthermore, additional measures which will
be explained later, have been taken to further mitigate this issue. It should
also be noted that occasionally, publications did not list any authors. These
publications, typically technical reports or editorials, were not loaded into the
database. These aspects explain the difference between the total number of
publications in the database and the sum of the number of papers returned by
both indexes.

An important question that remains is the extent to which the publications
of the query are indeed related to the topic at hand. More specifically, what
are the precision (i.e. the fraction of publications that are related to the topic,
software effort prediction) and recall (i.e. the fraction of relevant publications
that is correctly identified) of the query. The first would require to locate
and read all publications present in the data set, which would seem infeasible
given the total number of identified publications (cfr Table 1.3). To partially
verify the precision, a number of summary statistics were considered, such as
publication venue and publication date. These are detailed later throughout the
text. On the other hand, checking the recall would require some independent
set of publications, preferably systematically hand collected which can then be
matched to the publications present in the database. While this also might seem

7www.sciencedirect.com
8www.apps.webofknowledge.com
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Topic Papers Conferences Authors

Software effort prediction 1196 1077 3545
Science Direct 60 N/A
ISI Web of Knowledge 1152 1371

Software fault prediction 657 936 2582
Science Direct 40 N/A
ISI Web of Knowledge 681 1160

Table 1.3: Overview of the collected information

infeasible at first, we can make use of the set of publications identified in prior
literature reviews. In case of software effort prediction, the systematic literature
overview of Jørgensen and Shepperd can be adopted to this purpose [163]9. In
this study, the authors performed a systematic literature review which led to
the identification of 304 journal publications (conference publications were not
included in the scope of the paper). As the complete list is provided in appendix
of their paper, this set of publications can be matched to the database. A
total of 177 papers (an effective recall of 58.2%) were identified by the query
and successfully loaded into the database. It is important to note that the
inclusion criteria used in the study of Jørgensen and Shepperd were slightly
different in that ‘papers describing research on software development effort of
cost estimation’ were selected and thus also included e.g. managerial papers on
development effort which are less relevant to our particular setting of using data
mining techniques to software effort prediction.

Table 1.4 provides an overview of the top 10 journals publishing the most
papers in the field of software effort prediction together with their 5-Year Impact
Factor. It can be observed that 3 of the most important journals are published
by Elsevier with ‘Information and Software Technology’ containing most publi-
cations. Table 1.5 conveys similar information on the conferences in the field of
software effort prediction while Fig. 1.3 provides the evolution of the number of
publications (both journal publications and conference proceedings) over time.
These summary statistics indicate a sufficient precision in the data set as the
number of publications in non-computer related venues was found to be limited.
It can be concluded that the lack of definitive answer on how to best estimate
the development effort of a software project has indeed inspired much research
and resulted in an increasing number of publications in the domain of effort
prediction over the last years.

Each publication is written by one or more authors who collaborate with each
other. Considering this information allows to construct so-called academic so-
cial networks [302,303]. These networks can be geographically bound (e.g. only
include researchers from the same university or country) but are often found to

9Note that the authors of this literature review provide an updated version of the list of
relevant papers at www.simula.no/BESTweb. This updated list was however not publicly
available at the time of writing.
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Label Journal Impact Factor

Inf&SfTech Information and Software Technology 1.433
Proportion: 6.77 %, cumulative: 6.77 %

IEEETSE IEEE Transactions on Software Engineering 3.468
Proportion: 6.10 %, cumulative: 12.88 %

JSys&Sf Journal of Systems and Software 1.282
Proportion: 5.69 %, cumulative: 18.56 %

IEEESf IEEE Software 1.899
Proportion: 4.60 %, cumulative: 23.16 %

EmpSfEng Empirical Software Engineering 1.795
Proportion: 2.51 %, cumulative: 25.67 %

SfQualJ Software Quality Journal 0.813
Proportion: 2.26 %, cumulative: 27.93 %

ESWA Expert Systems With Applications 2.193
Proportion: 1.17 %, cumulative: 29.10 %

AmProg American Programmer N/A
Proportion: 1.17 %, cumulative: 30.27 %

CommACM Communications of the ACM 2.487
Proportion: 1.09 %, cumulative: 31.35 %

SfEngNt Software Engineering Notes N/A
Proportion: 1.09 %, cumulative: 32.44 %

Table 1.4: Journal overview: software effort prediction

Label Venue Count

METRIC International Symposium on Software Metrics 60
Proportion: 7.57 %, cumulative: 7.57 %

ICSE International Conference on Software Engineering 59
Proportion: 7.19 %, cumulative: 14.76 %

ESEM International Symposium on Empirical Software Engineering 20
and Measurement

Proportion: 2.52 %, cumulative: 17.28 %

Table 1.5: Conference overview: software effort prediction

0

10

20

30

40

50

60

70

80

90

100

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

P
a
p
er

co
u
n
t

Figure 1.3: Number of publications per year on software effort prediction
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Figure 1.4: The K.U.Leuven academic network in Empirical Software Engineer-
ing

be more related to specific research topics. A typical metric of successful collab-
oration is the number of publications and the impact of these publications (e.g.
the number of citations). As the number of citations is also dependent on the
publication age and since it was available for only a fraction of all publications,
only the total number of publications is used to denote the success of collab-
oration and thus the strength of the ties in the academic social networks. As
an example of such network, the academic network of the Department of De-
cision Sciences and Information Management at the KU Leuven is provided in
Fig. 1.4. The current affiliation of each person is listed in italic script (previous
affiliations between brackets).

Fig. 1.5 displays the most important (in terms of total number of publi-
cations) academic collaboration network in the domain of software effort pre-
diction. The number of publications of each researcher found in the database
is provided between square brackets. It should be noted that only ties with
a strength of two and up are taken into account during network construction
to make them more robust to minor errors introduced during the parsing or
to the inclusion of irrelevant papers that happen to match the query. Note
that academic collaboration networks have for instance already been studied
by Thang et al. [302] and implemented in the Arnetminer tool10. To the best
of our knowledge, academic social networks have not been explored in the do-
main of empirical software engineering (i.e. software effort and software fault
prediction), and further investigation herein could be a valuable addition to a
literature overview paper. The use of these networks allows to identify the key
researchers who made significant contributions to a certain topic, including the
number of joint publications which is captured by the weight of the edges in the
network. Moreover, there exists a class of specific metrics, called social network
metrics, to further quantify the importance of individual nodes (researchers)
with respect to the network [328]. One such typical social network measure

10www.arnetminer.org
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Figure 1.5: Software effort collaboration network

is the betweenness centrality of a node, Bc, which is defined as the number of
shortest paths between any two other nodes that pass through a particular node.
This metric thus can be used to quantify the degree to which one researcher me-
diates between others, and thus is a proxy to ones importance in the network,
together with the number of publications. The betweenness centrality of each
researcher is provided in italic script.

Note that in calculating the betweenness centrality, all edges in a network
have been taken into account; this includes edges with a weight of one or two,
which are not displayed in both figures11. The distance between any two con-
nected authors is given by

dij =
1

cij

�� ��1.1

where cij equals the number of joint publications of author i and j.

1.3.2 Methods for software effort prediction

Software projects are recognized to often exceed initial budgets and/or expe-
rience delays or even cancelations. In this respect, the findings of the Chaos

11The betweenness centrality has been calculated making use of the BGL toolbox in Matlab,
www.mathworks.com/matlabcentral/fileexchange/10922.
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Chaos reports
Year Successful Challenged Failed Avg. cost overrun

1994 16 % 53 % 31 % 189 %
1996 27 % 33 % 40 % 142 %
1998 26 % 46 % 28 % 69 %
2000 28 % 49 % 23 % 45 %
2002 34 % 51 % 15 % 43 %
2004 29 % 53 % 18 % 56 %
2006 35 % 46 % 19 % 47 %
2008 32 % 44 % 24 % 54 %

Other studies
Study Reference # Projects Avg. cost overrun

Jenkins et al., 1984 [151] 72 36 %
Phan et al., 1988 [256] 191 33 %
Bergeron et al., 1992 [31] 89 33 %
Moløkken-Østvold et al., 2004 [238] 52 41 %

Table 1.6: Overview of costs overruns in software development

1994 report are often cited, which claim that ‘a staggering 31.1% of projects
will be canceled before they ever get completed. Further results indicate 52.7%
of projects will cost 189% of their original estimates’ [304]. More recently how-
ever, the validity of these results have been questioned since the Standish group,
the authors of the 1994 and other bi-annual Chaos reports, refused to provide
transparency in how these results were obtained [90,162]. On the other hand, it
should be noted that also other studies found significant cost overruns of 30 to
40% on average. An overview of studies including the bi-annual Chaos reports
is given in Table 1.6.

In response to the lack of accurate software effort estimations, a range of
techniques and models have been proposed, which can be further subdivided
into three main categories: expert driven estimation methods, formal model
based estimation, and data mining oriented approaches [180]. Note that also
other taxonomies have been proposed to structure the corpus on software effort
estimation, see e.g. Kocaguneli et al. for a discussion hereon [182].

Expert driven estimation

The oldest and still frequently used approach for software development effort
estimation is expert driven estimation, in which one or more experts, based
on their experience, will come up with an estimation of the development effort
required to complete a specific project. Possible variations hereon include e.g.
delphi based prediction methods, in which multiple experts each provide an
independent estimate as a first step. Afterwards, all estimates are returned
to the experts, based on which they can revise their initial suggestion until an
agreement on the total development effort has been reached. The applicability of
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expert based judgement (also referred to as clinical judgement) versus statistical
methods (or actuarial judgement) has also been investigated in e.g. medical
settings. In such settings, actuarial methods were found to be preferable as they
are consistent (i.e. the same set of inputs always returns the same result). It was
also found that experts are often inclined to assume worst-case scenarios and
that the use of actuarial methods will ensure variables contribute to predictions
based on their actual relationship with the criterion of interest [68]. It should be
noted that actuarial methods can also often be automated thus possibly saving
time and expenses, even if the accuracy is comparable with clinical methods.

The software planning task is however dissimilar to medical problems since
e.g. the number of observations to learn from is typically low and there are
often unquantifiable factors affecting software development. As a result, soft-
ware effort prediction is sometimes found to benefit from expert opinion and
a number of researchers have taken an interest into this topic [160, 161, 165].
One important researcher is Jørgensen, who mainly focussed on expert driven
estimation approaches. As the overlap with other software effort prediction ap-
proaches is limited, this researcher was found to be only weakly connected with
other researchers (i.e. M. Shepperd and E. Mendes) in the academic network
shown in Fig. 1.5 and since network connections of insufficient strength were
discarded during network building, this researcher instilled a separate academic
network (not shown).

Formal models

A second approach to software effort prediction is the use of formal models. Sev-
eral such models have been developed, including Cocomo (COnstructive COst
MOdel) [35,39], SLIM (Software LIfecycle Management) [261] and FPA (Func-
tion Point Analysis) [5]. These models consider the size of the software project
and a number of predetermined parameters in some preset formulaic form to
estimate the development effort. Arguably the most commonly used formal
model is Cocomo, developed by B. Boehm in 1981. This model considers lines
of code (LOC) as a proxy for size (or more correctly: delivered source instruc-
tions, which exclude comment lines) and a number of other markup factors to
estimate effort, depending on the selected model. The basic Cocomo model
relates size directly to effort, disregarding markup factors, while the interme-
diate and advanced models include these additional factors. The original data
set on which the COCOMO81 model was calibrated is publicly available in the
Promise repository12. More recently, Cocomo II was introduced to account for
new trends such as the increased complexity of software projects and the reuse
of code. In fact, Cocomo II again constitutes of two models, referred to as the
early design model and the post architecture model respectively. The first can
be used during software design to explore various alternatives while the latter
is more detailed and will be used for the actual effort estimation task. The

12The Promise repository is a public data repository founded in 2005 which is aimed at
providing publicly available data sets to the research community to facilitate empirical software
engineering research. www.promisedata.org

14



Cocomo II post architecture model is defined as:

effort = a× sizee ×
17∏
i=1

EMi

�� ��1.2

in which a takes on a fixed value and EMi are the effort multipliers that quantify
specific project properties. The exponent e in this equation is determined by 5
additional project characteristics which are called scale factors since these have
a non linear impact on the estimated development effort. A definition of each
of the factors in the Cocomo II model can be found in [71].

SLIM, developed by L. Putnam in 1978, is an alternative to Cocomo which
again takes LOC as a proxy for project size and then modifies this through the
use of a Rayleigh curve model. SLIM is a proprietary model which is commer-
cially exploited by QSM (Quantitative Software Management Inc.), a company
founded by the inventor of SLIM13. Being an active company for many years,
this company collected a considerable data set which is however not accessible
to researchers.

In the literature, several issues regarding LOC as a size measure have been
described. These issues include the lack of an universal definition of LOC, the
fact that LOC count is implementation dependent and its dependency on the
coding style of a developer [159]. In response to these remarks, more end user
oriented size measures were put forward, most notably function points. A func-
tion point can be regarded as a quantification of the amount of ‘function’ that a
particular piece of code should perform. The idea of function points originated
from the work of A. Albrecht at IBM and his method entails the counting of
different elementary functions [5]. A distinction is made between 5 such func-
tions being external inputs, external outputs, external queries, internal logical
files and external file interfaces. Referring to the functional user requirements,
a count of the different elementary functions is made. Next, each function is
classified as simple, average or complex and, depending on this classification,
is given a larger weight towards the Unadjusted Function Point (UFP) count.
The adjusted (or final) function point count is then defined as

FP = UFP × V AF

with V AF = 0.65 + 0.01×
14∑
i=1

Fi .

�� ��1.3

Fi is the set of project characteristics that influence the function point count
and its definition can be found in [5]. This way of counting function points
is often referred to as the IFPUG method to the similarly named organization
which was founded in 1986. IFPUG (International Function Point User Group)
is a not for profit organization which resides under the ISBSG umbrella and
promotes the effective management of software development and maintenance

13www.qsm.com
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activities through the use of Function Point Analysis14. The ISBSG (Inter-
national Software Benchmarking Standards Group) in turn is a not for profit
initiative which also hosts the well known ISBSG data set15. This data set is
often used by companies for benchmarking purposes; note that also researchers
are granted access to this data set. The data is collected using standardized
questionnaires and contains data from a very diverse set of companies. The IS-
BSG has 11 participating IT and metric organizations with the (international)
IFPUG organization being the most important one. The others are nation-
ally focussed organizations from countries such as The Netherlands (NESMA),
Finland (FISMA) and Germany (DASMA). The IFPUG function point count-
ing method, together with other function point counting methods such as the
Mark II method proposed by C. Symons, are sometimes referred to as the first
generation of function points.

A new, second generation functional size measurement was proposed in 1999
by the COmmon Software Measurement International Consortium (COSMIC)
to address several shortcomings in the IFPUG approach. For example, the
distinction between simple, average and complex proved to be too rigid and
IFPUG function points were found to be not suitable to quantify the size of real
time projects. Moreover, the concept of ‘logical file’ underpinning the IFPUG
function point method is outdated. Despite several improvements, COSMIC
function points are seldom used in practice. It was noted by C. Symons that
probably ‘less than 1 % of all IT organizations use any type of functional size
measure. Of those who do, I would say that 99 % of them are probably using the
IFPUG method’ [300]. Note that both the IFPUG and the COSMIC functional
size measurement are ISO/IEC standards.

The academic network centered around B. Boehm was found to be one of the
most important in terms of number of publications. However, since the focus
of this work does not lie on the formal modeling approach, this network is not
included in the text. While academia have done interesting research into these
models, it was reckoned that their focus has recently shifted towards the use of
data mining techniques for software effort prediction [163].

Data mining

A third approach to software effort prediction is the use of data mining tech-
niques to create a mathematical model from a set of historic observations. Each
historic observation represents a previously completed project with a set of
known project characteristics. Typically, these include the project size (often
expressed in LOC, FP or an equivalent measure), information concerning the
development environment (i.e. concerning the team or company), project data
such as the purpose and type of the project and development related variables
expressing managerial and/or technical aspects of the software project. This
information is aggregated into a matrix X ∈ RN×n. N is used as the number of

14www.ifpug.org
15www.isbsg.org
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observations throughout this text while n represents the number of character-
istics or attributes. The time to complete the project is also recorded and this
is aggregated into a data set {(X, e)} where the target variable e denotes the
project completion time (in hours or an equivalent measure). Based hereon, a
data mining model predicting the effort of an unseen project i can be seen as
providing a mapping from the (known) project characteristics to the estimated
effort, f(xi) : Rn 7→ êi.

Data mining techniques have been investigated in the context of software
effort prediction since the early 90’s [44, 296] and have gained widespread aca-
demic attention during the last few years. A large and diverse set of techniques
have been proposed in this context and since development effort can take any
positive value, especially regression techniques have received attention. The of-
ten recurring use of analogy based learners (also known as case based reasoning
or lazy learning) which construct no explicit model deserves a special mention.
Instead, these learners select the set of most similar projects from the data and
based on their development effort, a prediction is generated. This approach
somewhat resembles the way in which experts will draw on their previous ex-
perience to form predictions [205,244,283]. Note that some work also discussed
the use of classification techniques after discretising the effort [275].

Data sets in the domain of software effort prediction seem to share a number
of characteristics which pose difficulties to data mining techniques. More specif-
ically, data in this domain is typically difficult to collect resulting in smaller data
sets. Collecting sufficient data thus represents a considerable startup cost for
companies eager to explore data mining techniques. Moreover, the data are
typically found to be skewed since larger projects are often underrepresented
in these data sets. Thirdly, as software development remains a human cen-
tric endeavor, a large number of intangible factors can come into play which
are difficult to capture by data mining techniques (e.g. disagreement amongst
developers or volatile end user requirements). Despite the academic interest
into these issues, the question which (data mining) technique is most applicable
remains an open issue.

Since the focus in this thesis lies on this third approach to software effort
prediction, the academic network shown in Fig. 1.5 focusses on researchers in-
terested herein. Although both metrics, the number of publications and the
betweenness centrality, not always agree on who are the key researchers in a
network, a number of interesting observations can be made. Focussing on this
academic network, it can be remarked that researchers from different countries
(China, UK, New Zealand) are present, indicating the importance of such net-
works. Further investigation also indicated the importance of conferences as aca-
demic meeting points, as these researchers typically had a considerable number
of such publications. The researchers in this network have performed research
on various domains; for instance J. Keung looked into analogy based learners,
proposing a framework called Analogy-X while B. Kitchenham did research on
the metrics which are used to assess the performance of prediction techniques
and on software bidding models together with the research group of L. Pickard.
On the other hand, E. Mendes leads an initiative called the Tukutuku Bench-
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marking Project, which aims at gathering effort data from web developers to
build cost models geared towards this type of companies16. M. Shepperd, among
other topics, has focussed on the impact of the number of observations and how
to deal with missing data elements. Overall, it can be concluded that their joint
research interest lies in applying data mining to software effort prediction. It
should be noted that also other researchers have worked on these and related
topics, and more details hereon can be found in Chapter 3.

1.3.3 Research objectives

As indicated earlier, a myriad of techniques has been adopted to the topic of
software effort prediction. While data mining techniques have recently become
more widely adopted, there is still no definite answer as to which data mining
technique would be most suitable [75, 163]. In Chapter 3, a large number of
techniques are compared to each other on a selection of software effort data sets
in order to provide an answer to this first question. Furthermore, this chapter
also looks into the aspect of feature subset selection, speculating that more
concise models can be obtained without incurring a performance penalty.

A closely related theme is that of model comprehensibility; depending on the
context, data mining models are required to provide a varying degree of insight
into the underlying relationships within the data. This seems especially true
for software effort estimation, as the outcome of these models serves as input
to budgeting and remuneration decisions. While this aspect was contemplated
upon in a study relating to regression rule extraction, see [278], we decided
against incorporating this part into this dissertation for reasons of brevity.

16www.metriq.biz/tukutuku/index.html
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1.4 Software fault prediction

The following section further elaborates on the field of software fault prediction
and is structured along the lines of the previous section by first providing an
academic overview of this domain followed by a more in depth discussion on
software fault prediction. The section is concluded by presenting the research
objectives for this topic.

1.4.1 Research landscape

Crucial to efficient software development is the introduction of a testing phase
to timely detect and correct faults since corrective maintenance costs typically
increase exponentially when faults are detected later during the development
life cycle [38]. An important observation is that faults tend to cluster; i.e.
are contained in a limited set of software modules [286]. Thus, testing efforts
can be made more efficient by upfront detection of fault prone code, no longer
requiring the whole code base to be tested. This finding motivated research into
the characteristics that discriminate between fault prone and non fault prone
modules [52,54]. Data mining techniques have often been employed to this end,
although software failure has also been studied from various other viewpoints
including the use of stochastic models to estimate post-deployment software
reliability [112] and other fault identification approaches such as the mining of
fault patterns [67]. Important hereto is the timing aspect: as costs incurred
to correct faults tend to increase exponentially over time, fault identification
and correction should take place before releasing the software. Other topics
such as post-deployment reliability modeling assume project completion. In
this dissertation, the focus lies on predicting the location of faults using data
mining techniques; to distinguish with other fault identification approaches, this
topic is further referred to as software fault prediction.

To get an overview of the domain of software fault prediction, a search query
similar to that of software effort prediction has been submitted to both Science
Direct and ISI Web of Knowledge indexes and information concerning the pub-
lications returned by this query have been entered into a separate database,
cfr. Table 1.3. The following query was adopted hereto: ‘(software fault
or software defect or software quality) and (estimation or predic-
tion)’.

In order to assess the recall and precision of this query, the approach de-
scribed earlier in Section 1.3.1 was adopted. In order to judge the first, a recent
literature review by Catal and Diri was identified [54]. This study included
publications on software fault prediction and software quality prediction, but
excluded those that did not provided any experimental results. As such, they
identified 27 journal publications and 47 conference publications, a total of 74
academic publications. It was found that 42 out of the 74 publications were
included in the database, an effective recall of 57%. Note that this recall rate
is comparable to that obtained on the topic of software effort prediction. The
precision is again verified indirectly, by calculating a set of summary statistics
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Label Journal Impact Factor

JSys&Sf Journal of Systems and Software 1.282
Proportion: 7.31 %, cumulative: 7.31 %

IEEETSE IEEE Transactions on Software Engineering 3.468
Proportion: 6.85 %, cumulative: 14.16 %

Inf&SfTech Information and Software Technology 1.433
Proportion: 5.02 %, cumulative: 19.18 %

SfQualJ Software Quality Journal 0.813
Proportion: 4.26 %, cumulative: 23.44 %

IEEESf IEEE Software 1.899
Proportion: 3.81 %, cumulative: 27.25 %

EmpSfEng Empirical Software Engineering 1.795
Proportion: 3.50 %, cumulative: 30.75 %

IEEETRel IEEE Transactions on Reliability 1.698
Proportion: 2.89 %, cumulative: 33.64 %

IntJSfEngKEng International Journal of Software Engineering 0.313
and Knowledge Engineering

Proportion: 1.98 %, cumulative: 35.62 %
ESWA Expert Systems With Applications 2.193

Proportion: 1.83 %, cumulative: 37.44 %
ASfEng Annals of Software Engineering N/A

Proportion: 1.52 %, cumulative: 38.96 %

Table 1.7: Journal overview: software fault prediction

similar to those obtained in Section 1.3.1. Table 1.7 provides an overview of the
10 journals containing the most software fault prediction related publications
together with their 5-Year Impact Factor. It can be seen that both IEEE and
Elsevier publish three journals from this list with the Elsevier journal ‘Journal
of Systems and Software’ ranked first. Table 1.8 conveys similar information on
the conferences in the field of software fault prediction while Fig. 1.6 illustrates
the evolution of the number of publications (both journal publications and con-
ference proceedings) over time. Conclusions similar to that of Section 1.3.1
regarding the precision can be drawn, as the summary statistics e.g. indicate
that the number of publications in non-computer related venues is limited. The
evolution in the number of publications is indicative to the increasing interest
into this topic. One peculiarity however showing in both Fig. 1.3 (Number of
publications per year on software effort prediction) as in Fig. 1.6 is that a sharp
decrease can be observed in the year 2010. Since this occurs in both cases,
it is believed this can be attributed to the indexes themselves as not all 2010
publications have already been included.

1.4.2 Methods for software fault identification

Unlike in the case of software effort prediction, data collection can be automated
and intangible factors are typically less important. To the best of our knowledge,
only a single study discussed the application of expert based fault prediction
and concluded that ‘when it comes to comparing both methods we found that
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Label Journal Count

ISSRE International Symposium on Software Reliability Engineering 37
Proportion: 7.91 %, cumulative: 7.91 %

ICSM International Conference on Software Maintenance 9
Proportion: 3.53 %, cumulative: 11.43 %

METRIC International Software Metrics Symposium 7
Proportion: 2.56 %, cumulative: 14.00 %

Table 1.8: Conference overview: software fault prediction
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Figure 1.6: Number of publications per year on software fault prediction
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statistical models outperformed expert estimations’ [309]. Other papers have
focussed on data mining and alternative approaches that can be automated. In
this thesis, the focus lies on the application of data mining (i.e. software fault
prediction).

Alternative approaches

Trying to identify fault prone regions in the source code, a number of alternative
approaches have been proposed. The following paragraph serves to provide
a non exhaustive overview of these approaches. These can be regarded as a
alternative or a complement to software fault prediction.

A first such approach, termed ‘specification inference’, noted that software
specifications are often incomplete or missing and aims to derive a more complete
set of specifications from source code or program execution. Further analysis
of these specifications can reveal faults, which are then linked to regions in
the source code. E.g. Yang et al. illustrated such an approach in which they
focussed on temporal properties (e.g. acquiring and releasing locks) and induced
a set of rules hereon to indicate the presence of bugs [337].

Others mined the source code for implicit programming rules which, if vio-
lated, can indicate the presence of an error. Li et al. for example used frequent
item set mining to derive sample rules from the source code [206]. An example
of such rule could be that if the command ‘AskCache’ is used, it should be
followed by the command ‘ReleaseCache’. An alternative approach which com-
pares the Abstract Syntax Tree of a program before and after introducing a fix
to derive typical fault patterns is described in Dallmeier et al. [67]. The authors
also introduced IBugs, a technique to extract source code snapshots of bugs and
their code fixes and using this technique, they constructed a data set from the
AspectJ and Rhino source code repository that could serve as a benchmark for
similar approaches. This data set is publicly available17.

17www.thomas-zimmermann.com/research/mining-bug-databases
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Software fault prediction

Contrary to the alternative approaches discussed earlier, the data mining tech-
niques underpinning software fault prediction research consider characteristics
of code segments to predict whether a segment is fault prone or not. Possible
characteristics include LOC counts, complexity metrics and code churn metrics
and this information can be represented as a matrix X ∈ RN×n with N the
number of code segments and n the number of characteristics. These character-
istics or attributes can be extracted by using static code analysis tools such as
Prest [183], McCabeIQ18 or Emerald [144]. Other attributes such as code churn
metrics can directly be derived from content management systems. For each
code segment it is also noted whether a previous release contained one or more
faults. This information is often contained in a separate repository called the
bug tracker, as detailed in Section 1.2.1. As entries in the bug tracker can also
refer to modification requests or functionality additions, a matching between
the actual bugs in the bug tracker and code changes in the source code repos-
itory is required [20]. Note that some modern software management systems
integrate both into a single platform implying that changes to the source code
can only be made if an accompanying entry in the bug tracker exists19. Let
yi be a dichotomous target which indicates whether a code segment is faulty
(yi = 1) or error free (yi = 0). Using data mining techniques, a mathematical
model can then be derived that provides a mapping from the (known) code seg-
ment characteristics to an estimate of the fault proneness of that code segment,
f(xi) : Rn 7→ P (ŷi = 1|xi). Models that provide such mapping to a dichotomous
target are often referred to as classification models. Note that some work also
regarded the software fault prediction task as a regression problem, predicting
the actual number of faults per code segment [251].

Data mining models can be induced on different levels of granularity; i.e.
the code segments can be for instance files, classes or methods, depending on
data availability. Clearly, a finer granularity would be preferred to guide test-
ing efforts more efficiently but requires increased data collection efforts and
thus a trade off should be made. Depending on the granularity, different code
characteristics can be used; for instance, LOC counts are independent of the
granularity while the Chidamber-Kemerer metric suite can only be used in case
of classes. Other well known complexity metrics such as McCabe cyclomatic
complexity metrics and Halstead numbers are often defined on the granularity
of methods but can also be calculated or otherwise aggregated to other granu-
larity levels.

More recently, it was argued that future research into software fault pre-
diction should change its focus from designing better modeling algorithms to-
wards improving the information content and / or investigation into the model
evaluation functions to take the context of software development into account
[157,233]. For instance, Jiang et al. used requirement metrics such as the num-
ber of weak phrases and imperatives associated with a source code segment,

18www.mccabeiq.com
19Examples of such integrated platforms are Fossil and Veracity.
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which can e.g. be obtained by text parsing of requirement specification doc-
uments [155]. A number of other researchers investigated the use of networks
and social network metrics to augment software fault prediction. Zimmermann
et al. considered software dependency networks and compared social network
metrics derived from these networks with static code metrics. They concluded
that the inclusion of software dependency networks improved predictive per-
formance [343]. Also Turhan et al. considered a network approach, using the
PageRank algorithm to determine the importance of each software module. This
importance was subsequently used to rescale the attribute values of individual
software modules, and the result was used as input to a Naive Bayes learner.
They found their approach to reduce false alarm rates [316].

It also remains unclear how software fault prediction models should be eval-
uated. Typical measures include accuracy, recall, precision and F1 measure,
which is the harmonic mean of recall and precision. A property shared amongst
these measures is that they only take a single operating point of a classifier into
account, which can be suboptimal as data sets are often skewed (i.e. a minor-
ity of erroneous modules). As a response hereto, a number of other measures
have been introduced into the domain of software fault prediction such as the
area under receiver operating curve (AUROC) and the recently introduced H-
measure [125]. Also evaluation techniques more geared towards the specificities
of the fault prediction task have been introduced; examples hereof are the in-
troduction of the notion of effort awareness in model evaluation [226], the use
of cost curve analysis [156] and the WHICH meta-learner framework that can
be customized to optimize specific goals [231].

Another question relates to the empirical validation setup; often some learner
is applied to one part of the data, using the remaining data for performance
assessment. These results are subsequently extrapolated towards the future
without supporting evidence. Typical procedures here include holdout splitting
[200], x-fold cross validation [4,70] and leave-one-out cross validation. However,
it has been argued that when data on multiple releases is available, one could
revert to a cross release validation setup, accounting for the ordering in releases
when defining training and test set [173, 251, 342]. Moreover, the recent intro-
duction of the notion of concept drift in software fault prediction by Ekanayake
et al. [87] is underscoring the appropriateness of this approach, as they con-
cluded that the quality of defect prediction approaches varies over time. Other
work discussed the feasibility of cross project validation, training and testing
models on data stemming from different projects [134, 317]; the results of cross
project studies paint however a more mixed picture, see e.g. Zimmermann et
al. [344].

From the academic networks built for the topic of software fault prediction,
the two most important in terms of papers are shown in Fig. 1.7 and Fig. 1.8.
The first network is centered around Prof. dr. Taghi Khosghoftaar, affiliated
with the Florida Atlantic University, who has done research in several areas
including software fault prediction, data imputation techniques and efficient
attribute filtering and selection methods. He collaborates with many others
active in software fault prediction, including Naeem Seliya and Kehan Gao.
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The second academic software fault prediction network include 7 researchers,
which can be subdivided into a USA and a Turkish branch. The person with
the most publications in this network is Burak Turhan; it should however be
noted that a researcher like Tim Menzies arguably has been equably important
to this domain as he is one of the founders of the Promise repository initiative
mentioned in Section 1.3.2. He also e.g. investigated the NASA MDP repository
data sets, which are now in the public domain. Prof. dr. Turhan is collaborating
with Prof. dr. Menzies since 2008 and this cooperation has resulted in a number
of valuable publications on out of sample validation (i.e. cross-company) and
model evaluation.

1.4.3 Research objectives

While a large number of different data mining techniques have been investigated
in the context of software fault prediction, considerable attention has been given
to one particular class of techniques: Bayesian Network (BN) classifiers. For
instance, it was noted by Menzies that the gain of advanced techniques to a
simple technique such as Naive Bayes is limited [230]. Furthermore, it should
be noted that BN classifiers typically learn comprehensible models [189]. While
the Naive Bayes classifier is often selected, other BN learners which allow to
construct more flexible networks are less well investigated. In a first chapter
relating to software fault prediction, Chapter 4, these BN classifiers are explored;
it is hypothesized that these other classifiers are not outperformed by Naive
Bayes while allowing for smaller and more comprehensible models. Also an BN
inspired feature selection approach is studied in this chapter.

A second chapter on software fault prediction finds its motivation in the
recent work of Gray et al., which signaled several data quality issues with the
NASA data sets which could potentially invalidate earlier findings [117]. As
these data sets have been frequently used for fault prediction, the importance
of thoroughly investigating these issues and quantifying their impact cannot be
underestimated. A first aspect which is investigated is the many versions of
the NASA data sets that seem to be in circulation. Furthermore, Gray et al.
outlined a second problematic issue, namely the large number of repeated data
points, resulting in the repetition of training observations in test and validation
sets. It has been argued that when tuning a learner towards the specific char-
acteristics of a data set using a validation set containing duplicates, learners
are prone to over-fitting [187]. Duplicates in the test set on the other hand can
result in overly optimistic performance estimates [334]. These issues, together
with an update to the well established benchmarking framework of Lessmann
et al. allowing for a better statistical discrimination of machine learning algo-
rithms, are presented in Chapter 5.

Current and future research objectives

As a first future research objective, the different evaluation metrics currently
in use in this domain will be further studied. As was noted by Menzies, and
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by researchers in other domains [201], data mining models tackling real-world
business problems should be optimized taking the context of the problem into
account. Hereto, an ensemble learning framework proposed by Caruana et al.
will be adopted [50]. This approach allows, similar to the WHICH meta-learner
framework recently proposed by Menzies, to optimize context specific evaluation
metrics.

A second future research topic relates to the use of network learners to aug-
ment software fault prediction models. As noted earlier, software dependency
networks (and other types of networks) have been found to complement static
code based prediction models. This work typically considers a number of static
code features of each code segment and also constructs a network, indicating the
relationships between all segments. This network is then summarized into a few
key characteristics (e.g. the betweenness centrality discussed in Section 1.3.1)
for each segment (node) in the network. These characteristics, together with the
static code features, are used as an input to traditional data mining techniques,
which assume observations to be independent from each other. There exists
however a class of learners that no longer impose this assumption: relational
learners [213]. These learners try to generalize from the network topology itself
and might prove to be a valuable addition as these models are able to incor-
porate information relating to neighboring code segments, thus improving the
information density of the data.
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Mathematics is written for math-
ematicians.

Nicolaus Copernicus, 1473–1543 2
Machine Learning: general concepts

This chapter introduces the notation adopted throughout the remainder of this
dissertation, and subsequently presents the general supervised machine learning
taxonomy which serves as an underpinning to the next chapters. Next, basic
concepts relating to model evaluation are detailed, also discussing the dimension
of model comprehensibility. Finally, all concepts are linked to each other by
making use of the concept of the Knowledge Discovery in Databases (KDD) cycle
and an application hereof in the domain of student satisfaction is presented.

Parts of this chapter have been published in

- K. Dejaeger, A. Giangreco, L. Mola and B. Baesens, “Gaining insight into stu-
dent satisfaction using comprehensible data mining techniques,” European Jour-
nal of Operational Research, 218 (2): 548–562, 2012.

- R. Setiono, K. Dejaeger, W. Verbeke, D. Martens and B. Baesens, “Software
effort prediction using regression rule extraction from neural networks,” 22nd

International Conference on Tools with Artificial Intelligence, pp. 45–52, 2010.

2.1 General notation

The following notation is adopted throughout the dissertation. A scalar x ∈ R
is denoted in normal script while a vector x ∈ Rn is in boldface script. A vector
is always a column vector unless indicated otherwise. A row vector is indicated
as the transposed of the associated column vector, x′. A matrix X ∈ RN×n

is in bold capital notation. i is used to identify observations while j refers to
attributes; hence, xi(j) is an element of matrix X representing the value of the

jth variable on the ith observation. N is used as the number of observations in
a data set while n represents the number of variables.

When considering a regression task, the target variable is a scalar e ∈ R; in
the context of software effort estimation, the target variable is effort in man-
months or an equivalent measure. Consequently, the actual effort of the ith

software project is indicated as ei while the predicted effort is indicated as
êi. In line with this notation, the task of estimating the software development
effort can be defined as follows: let Dtrn = {(xi, ei)}Ni=1 be a training data set
containing N observations, where xi ∈ Rn represents the characteristics of a
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software project and ei ∈ R is the continuous target variable. A software effort
estimation model is then formally defined as a function f mapping instances to
the continuous target, f(xi) : Rn 7→ êi.

When on the other hand considering a classification task, the target variable,
yi, is a dichotomous attribute indicating the class of an instance. The number
of classes is denoted by K. Thus, in case of software fault prediction, the target
variable, yi, is a dichotomous attribute indicating whether a software module
contains faults (yi = 1) or not (yi = 0) and K = 2. In line with the above
notation, the task of learning a software defect model can be defined as follows:
let Dtrn = {(xi, yi)}Ni=1 be a training set containing N observations, where
xi ∈ Rn represents the static code features characterizing the ith instance, and
s(xi) ∈ ]−∞,∞[ is a score indicating the propensity of belonging to the class
of fault prone code segments. A software defect model is then formally defined
as a function m mapping instances to real values (scores) on some unspecified
scale, m(xi) : Rn 7→ s(xi) ∈ R. Alternatively, a classifier c maps instances to a
crisp label which indicates the presence of faults, yi ∈ {0, 1}, possibly by setting
a threshold t on the scores. Formally, c(xi) : Rn 7→ yi ∈ {0, 1}.

2.2 Machine Learning

Supervised machine learning reasons on the basis of externally supplied in-
stances to learn hidden patterns, allowing to score unseen instances. Depending
on the values the target attribute can take, a distinction between classification
and regression is made. Machine learning entails however not only classification
or regression tasks, but also e.g. reenforcement learning, association rule mining
and clustering [301].

Reenforcement learning pitches an agent in a dynamic environment and pro-
vides a scalar reenforcement signal indicating the operational performance as
input to this agent. The agent is not told which actions to take, but instead
must iterate over all possible actions to find out which actions result in the
highest reward. An example application is the learning to control a RC airplane
by such agent1.

Association rule mining tries to find relationships between attributes, not
requiring per se a target variable. Let I = {i1, . . . , in} be a set of items. An
association rule is then an implication of the form x → x′ where x ∈ I and
x′ ∈ I are called itemsets and x∩x′ = ∅. Often used for market-basket analysis,
association rule mining can also be applied to e.g. a classification setting by
inferring rules of the form x → y with sufficient support and confidence. An
example of the application of association rule based classification within the
domain of software fault prediction is presented in Baojun et al. [25].

Clustering is another unsupervised machine learning task in which one tries
to group instances in clusters by minimizing the intra-cluster distance while at
the same time maximizing the inter-cluster distance. Clustering techniques are

1For a demonstration on reenforcement learning, please refer to e.g. the online machine
learning classes of Standford university. www.youtube.com/watch?v=UzxYlbK2c7E
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ML based algo. Perceptron based Evolutionary algo. Swarm intelligence

# 186 - 59.8% # 84 - 27.0% # 29 - 9.32% unknown

Kernel methods Staticical methods Ensemble learners Other techniques

# 89 - 28.6% XRegression XBagging XSNA

# 180 - 57.9% # 63 - 20.3% # 44 - 14.2%

XBayesian XBoosting

# 68 - 21.9% # 73 - 23.5%

Table 2.1: Usage of ML techniques: KDnuggets survey results of 2012

often used as a data preprocessing or data exploration step [334]. E.g. Self
Organizing Maps (SOMs) can also be used for dimensionality reduction or data
visualisation [276].

Several supervised machine learning taxonomies have been put forward in
the literature, see e.g. Kotsiantis [189], who distinguished logic based algorithms
from perceptron-based techniques, support vector machines, statistical learning
algorithms, and instance-based learning. Figure 2.1 presents the general su-
pervised machine learning taxonomy adopted in this dissertation; it should be
noted that, depending on the task at hand, some types of techniques are only
suitable for regression (e.g. linear regression) or classification (e.g. discriminant
analysis). These are indicated by an r and c respectively. Evidently, some tech-
niques are more popular than others; this can be due to a variety of reasons,
including predictive power, computational efficiency, noise tolerance, the possi-
bility to use graphical artifacts, the ability to deal with redundant or irrelevant
attributes, and the ease of using the algorithm. Table 2.1 reports on the popu-
larity vis-à-vis our taxonomy; the numbers of users per type of learner are taken
from the yearly KDnuggets2 survey on this topic. Note that these numbers are
also dependent on the research domain; other techniques are more popular in
e.g. the domain of software engineering [76] or medical sciences [152].

2.2.1 ML based algorithms

Machine Learning (ML) based algorithms can be further subdivided into deci-
sion tree inducing algorithms and those that output a rule set. It can be shown
that decision trees and rule sets consisting of mutually exclusive propositional
rules (cfr below) are logically equivalent in the sense that one type of represen-
tation can be automatically translated into another (albeit in a simpler or more
complex form), while preserving the predictive behavior of the original model
[145,321]. Due to their expressive possibilities and computational efficiency, this
family of techniques have been often adopted in business and research alike.

2www.kdnuggets.com
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Figure 2.1: Supervised machine learning: proposed taxonomy
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Decision tree algorithms

A decision tree consists of a number of internal nodes, specifying conditions
to be tested, and a number of leaf nodes with a class label. New observations
can be classified by traversing the tree from top to bottom where condition
tests in the internal nodes indicate whether the left or right branch must be
followed. The tree is constructed in a top-down fashion, considering all training
instances in a first step, recursively splitting the set of instances into smaller,
more homogenous subsets according to some heuristic to assess the purity of
the splits. In case of classification, the splitting heuristic is often derived from
Shannon’s information theory [279]. More specifically, entropy-based measures
are commonly adopted hereto, which can be seen as a proxy to the purity of
a data set with respect to the class variable. Let D = {(xi, yi)}Ni=1 be a set of
instances and P (yi = 0) (P (yi = 1)) be the prior probability of instance i to
belong to class 0 (class 1). The entropy is then defined as:

Entropy(D) = −P (yi = 1)×log2(P (yi = 1))−P (yi = 0)×log2(P (yi = 0))
�� ��2.1

For example, the ID3 and the C4.5 algorithm (also sometimes known as J48) em-
ploy a splitting criterion which quantifies the gain in purity (i.e. the decrease in
entropy) during model construction. The CART (Classification And Regression
Tree) learner utilizes yet another splitting heuristic, the Gini diversity index:

Gini(D) = 1−
K∑

k=1

P (yi = k)2
�� ��2.2

Alternatives
Many decision tree learners can be adjusted to a regression setting, by changing
the splitting criterion at the internal nodes. One option is e.g. to split the
data in such a way that the variance is minimal at the child nodes. Note that
also further extensions are possible, by e.g. fitting a regression function to the
instances at each leaf node [263]. In the next chapter, both CART for regression
and M5′ are further discussed in the context of software effort estimation.

Also other alternatives to the ubiquitous C4.5 decision tree learner exist,
which e.g. consider splits based on multiple attributes, resulting in non-axis
parallel decision boundaries such as the Oblique Classifier 1 (OC1) explained
later in this chapter. Other tree learners employ statistical tests such as the
CHi-squared Automatic Interaction Detection (CHAID) algorithm [170].
Pruning
Decision tree learners are known to be sensitive to overfitting the training data;
without stopping criterion, a tree would try to fit the idiosyncracies in the
training data, leading to a tree which will poorly generalize to unseen instances.
Thus, many decision tree learners employ a pruning procedure and/or use a
stopping criterion to prevent the tree from overfitting the training data. For in-
stance, CART and OC1 employ a cost-complexity pruning procedure, regulated
by a complexity parameter α, which can be seen as a parameter to balance
additional predictive performance against a more complex tree. Briefly, this
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procedure works as follows:
Construct trees of decreasing size from the original, complete tree, iteratively
collapsing the child nodes until only a decision stump remains. Classify the
validation set using the pruned trees and measure each time the classification
performance. Finally, the smallest tree is selected which is within α standard
errors of the tree with the best classification performance.

Rule induction

The most common type of rules is without any doubt propositional if-then rules.
The condition part of a propositional rule consists of a combination of conditions
on the input variables. While the condition part can contain conjunctions,
disjunctions, and negations, most algorithms will return rules that only contain
conjunctions. As an example, the rule proposed in Visual Studio to indicate a
candidate module for refactoring is given below.

IF cyclomatic complexity > 25 THEN fault prone
DEFAULT:not fault prone

Most algorithms will ensure that the condition parts of each rule demar-
cate separate areas in the input space: i.e., the rules are mutually exclusive.
Therefore, only one rule is satisfied when a new observation is presented and
that rule will be the only one used for making the classification decision. Other
algorithms allow multiple rules to fire for the same observation. This requires
an additional mechanism to combine the predictions of individual rules, such
as assigning a confidence factor to each rule or sorting the rules and allowing
only the first firing rule to decide. Finally, it should be noted that a tree is
logically equivalent to a set of IF-THEN rules [145]; Fig. 2.2 illustrates this on
the ISBSG R11 software effort estimation data set.

Figure 2.2: Pruned CART tree induced on the ISBSG R11 data set
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Several popular rule induction learners exist, including Repeated Incremen-
tal Pruning to Produce Error Reduction (RIPPER), which produces ordered
rule sets and the OneR learner of Holte, which learns exactly one rule, with a
single rule antecedent [142]. Menzies et al. compared the OneR learner to J48
and Naive Bayes with a log transformation of the attribute space. They reported
that ‘predictors that use simple threshold comparisons (OneR) perform worse
than predictors built from more elaborate decision trees (J48)’ [230]. However,
Holte showed that the gain of very simple models (i.e. OneR rule sets) to more
complex models (i.e. C4.5 trees) is often limited, concluding that ‘simple-rule
learning systems are often a viable alternative to systems that learn more com-
plex rules’ [142]. Arisholm et al. compared PART, a more recent alternative
to RIPPER with C4.5, neural networks, and other classification algorithms in
the context of software fault prediction and concluded that the performance of
PART varied widely while e.g. C4.5 yielded more consistent results [12]. Note
that e.g. in a telco setting, Verbeke et al. found rule sets induced by RIPPER to
be small and comprehensible, while retaining a high sensitivity, comparing this
technique to a.o. C4.5, Antminer+ and the ALBA rule extraction technique.

2.2.2 Perceptron based models

Neural networks (NNs) are mathematical representations inspired by the func-
tioning of the human brain [34], and have previously been applied in various
contexts, including software effort estimation and software fault prediction, as
they enjoy some beneficial properties.

• NNs have previously been applied with success on data sets with complex
relationships between inputs and output, and where the input data is
characterized by high noise levels.

• NNs with one hidden layer have been proven to be universal approximators
which can approximate any continuous function or mapping to a discrete
target to a desired degree of accuracy.

The most recurring type of NN are multilayer perceptron (MLP) networks. A
MLP network is typically a three-layer feedforward (i.e. not containing recursive
loops) network with each layer consisting of several neurons. Assuming a hidden
layer consists of H hidden neurons, the output of the hth hidden neuron is
computed as:

h = fhidden(wh +
n∑

j=1

Wjh × x(j))
�� ��2.3

Herein represents wh the bias of the hth hidden neuron and W the weight
matrix, whereby Wjh is the weight of the edge connecting input node j with
hidden node h. Function fhidden(.) is a so-called transfer function, which can
e.g. be a linear, a threshold or a sigmoid function. The output of the MLP
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network is finally given by:

ŷ = foutput(v0 +

H∑
h=1

Vh × h)
�� ��2.4

with Vh the weight matrix on the edges from the hidden layer to the output
node and v0 the bias of the output node. Again, foutput represents some transfer
function. The randomly initiated biases and weights are iteratively updated as
the learning algorithm is presented with new training instances to generalize
from.

x(1)

x(n)

.

.

.

.

.

.

w1

wH

w11

w12

v1

vH

v0

Figure 2.3: Three layered MLP topology

Back propagation is arguably the most well known training algorithm and
uses in fact a gradient descend approach in which the network weights are iter-
atively updated along the most negative direction of the gradient of the perfor-
mance indices, i.e. the direction in which the performance function decreases the
most rapidly, assuming e.g. the sum of squared errors as performance function.
One iteration of this algorithm can be written as:

[W V]t+1 = [W V]t + αt × gt
�� ��2.5

with αt the learning rate at iteration t and gt the gradient. The learning rate
is a parameter which can be set to enable faster convergence of the algorithm.
Note that also further improvements to the algorithm are possible, such as using
a momentum parameter in order to avoid getting stuck in a local minimum or
conjugate gradient descend algorithms which will also perform a line search to
determine the optimale distance along the current gradient.

There also exist learning methods based on the Hessian of the performance
indices, referred to as Newton algorithms, which boosts faster convergence.
However, as the Hessian is expensive to calculate in the case of MLPs, a num-
ber of approximative algorithms have been proposed, including the Levenberg-
Marquardt algorithm, which use the first order derivatives to approximate the
Hessian [120].

Finally, note the possibility to introduce a weight penalization term during
training, allowing the removal of irrelevant and redundant input units and hid-
den nodes. An example of the application of such algorithm in the context of
software effort estimation can e.g. be found in Setiono et al. [278].
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RBF networks
Radial Basis Function (RBF) networks are a special case of neural networks,
rooted in the idea of biological receptive fields [240]. A RBF network is a three-
layer feedforward network consisting of an input layer, a hidden layer typically
containing multiple neurons, and a linear output layer. Each of the neurons is
positioned in the input space, e.g. by applying a clustering procedure in the
input space. The output of each hidden unit, when confronted with an unseen
case, is inversely proportional to the distance between this instance and the
center of this neuron. In calculating the output of the hidden units, a radial
symmetric gaussian transfer function is typically used:

radbas(xi) = e−||ck−xi||×b2
�� ��2.6

where ck is the kth cluster centroid, ||.|| the Euclidian distance between two
points, and b a bias term. Hence, each neuron has its own receptive field in the
input domain: a region centered on ck with size proportional to the bias term,
b [240].

2.2.3 Evolutionary algorithms

Evolutionary algorithms are developed for tackling general optimization prob-
lems and are based on the Darwinian theory of natural selection. This theory
states in essence that genetic operations between individuals eventually gener-
ate fitter individuals which are better suited for survival. In case of Genetic
Algorithms (GA), an individual is represented by a fixed length binary string.
Genetic Programming (GP) is an extension to GA in which an individual is
some algebraic expression of arbitrary length [190]. This expression is evalu-
ated to assess the fitness of the individual. Learning a GP model in general
constitutes of three phases.

1. Generate the initial population of solutions

2. Create a new population based on the previous population by applying
genetic operations to a selection of individuals of the current population

3. Iterate step (2) until some stopping criterion is met or a specified number
of generations has been reached

Application of GP requires a number of preparation steps. First, a suitable
set of operators needs to be selected; this set of operators should reflect the
relations expected in the data set. Commonly used operators include {+, −,
×, /, log}. Secondly, a suitable representation format has to be decided upon.
A typical representation format used in GP are trees. Finally, a number of
parameters needs to be specified, including how the initial population is con-
structed, which genetic operators are applied (e.g. mutation and crossover) and
the evaluation criterium used to score the individuals at each iteration. Also
which individuals make it to the next round is a parameter that can be specified.
Evolutionary algorithms have been used in various domains, including software
fault and effort estimation [49,209].
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2.2.4 Swarm intelligence

Swarm intelligence studies systems which are composed of many individuals
who interact with each other and their environment. This family of techniques
found its origin in the success of biological swarm systems such as ant hives
and the flocking behavior of birds. While individuals exhibit limited cognitive
abilities, the swarm behaves more intelligent by finding efficient solutions for
complex problems such as finding the shortest path to a food source or predator
evasion. The typical swarm intelligence system exhibit the following properties
[82].

• it is composed of many individuals

• all individuals are similar to one other

• the interactions amongst individuals are mandated by simple behavioral
rules, using information derived from the local environment

• the system coordinates itself, without the presence of an external controller

Swarm intelligence for supervised machine learning can be further subdivided
into Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO),
which are the two main meta-heuristics in this field of research. Swarm intel-
ligence has been accredited for learning robust and scalable models and have
been the focus of many recent research [219].

Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic based on the foraging be-
havior of ants, and underlying to ACO is the observation that shorter paths will
be attributed with higher pheromone levels. Evaporation causes the pheromone
levels of all trails to diminish, and trails that fail to be chosen gradually lose
pheromone and will be selected by subsequent ants with a lower probability.

ACO initiates by constructing a solution space in which the values of discrete
attributes constitute the nodes (a vertex group) and links between any two
values of two subsequent attributes the edges, assuming some random ordering
on the attribute space. A dummy vertex signifying a random value for that
attribute is added to each vertex group. Ants are created and traverse the
network from source to sink, each path corresponding with a classification rule.
The path followed by each ant depends on the pheromone levels of that path,
and, depending on how pheromone is added to the paths, a further distinction
can be made between different ACO approaches. E.g. the Elitist Ant System
will deposit pheromone on all traversed paths as well as the global best path
on every iteration while the max −min Ant System [298] will add pheromone
only to the best path. Also, to prevent early stagnation, the pheromone levels
will be limited to a range [τmin, τmax]. The well known Antminer+ learner is an
example of a max−min Ant System and has been applied in various contexts,
including to the domain of software fault prediction [17, 320]. It was found
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to perform on par with ML based algorithms such as C4.5 and Ripper while
resulting in smaller rule sets.

Note that ACO is arguably the most popular swarm intelligence meta-
heuristic and its application area is limited to classification problems. It was
recently recognized that one of the main elements holding back the wide spread
use of ACO systems is the limited availability of software implementations [219].
Noteworthy in this regard is the availability of e.g. the AntMiner+ algorithm
in the Matlab environment3.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a second swarm intelligence meta-heuristic
which was proposed in 1995 by Kennedy and Eberhart [172]. In PSO, a num-
ber of simple entities, the particles, are positioned in the search space of some
continuous optimization problem. Each particle represents a possible solution,
and will be moved through the search space by combining some aspects of the
local history, i.e. information regarding its own current location and best pre-
vious location, with information of one or more members of the swarm [257].
Each particle a constitutes three vectors. These are the current position, −→x a,
the previous best location, −→p a, and the velocity, −→v a. At each iteration of
the algorithm, the current position of each particle is updated by the following
formula.{ −→v a ← −→v a +

−→
U (0, ϕ1)⊗ (−→p a −−→x a) +

−→
U (0, ϕ1)⊗ (−→p g −−→x a),

−→x a ← −→x a +−→v a

�� ��2.7

Herein represents
−→
U (0, ϕk) a vector of random numbers that are uniformly dis-

tributed in [0, ϕi] and ⊗ represents a component-wise multiplication. −→p g is
the best location of the particles in the neighborhood of particle a. Initially,
the particles are scattered randomly through the search space; as the algorithm
converges, the particles will stochastically be moved to their own best solution
together with the neighborhoods’ best solution. This idea is illustrated in Fig.
2.4. The number of particles and the perturbation vectors ϕ1 and ϕ2 (also re-
ferred to as the acceleration coefficients) are parameters of the algorithm. Note
that especially the acceleration coefficients are of crucial importance to the con-
vergence of the algorithm as too large values will result in uncontrolled particle
acceleration while too low values results in unresponsive systems. The impact
of the acceleration coefficients is indicated by the shaded areas in the figure, and
are re-initiated at each iteration. A typical value for ϕi is 2, while other work
also defined a maximum bound on the speed of the particles, −→v max. Note that
PSO has been applied with some success in a software engineering setting [70].

2.2.5 Kernel methods

In the last few years, much attention has been given to kernel methods. Ar-
guably, the main protagonist in this domain is the Support Vector Machines

3www.antminerplus.com
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−→x a

−→pa
−→p

g

−→v a

U(0, φ2)⊗ (−→p
g
−−→x a)

U(0, φ1)⊗ (−→p
a
−−→x a)

Objective function

Figure 2.4: The update of a particle in the original PSO algorithm

(SVM) learner, but e.g. Gaussian processes have also gained ground in certain
application fields [265]. However, to the best of our knowledge, there has been
no work discussing the use of Gaussian processes in software effort nor fault
prediction and thus our focuss will lie on this main protagonist: Support Vector
Machines (SVM).

Support Vector Machines

SVM is a (non) linear modeling technique based on recent advances in statistical
learning theory [322] and constructs a maximum margin hyperplane separating
the instances of two classes. In essence, the following objective function is
minimized.

min ||w||
2

2
+ C

∑N
i=1 εi

s.t. yi[wϕ(xi) + b] ≥ 1− εi, i = 1, . . . , N
εi ≥ 0, i = 1, . . . , N

�� ��2.8

Herein, w ∈ Rn and b ∈ R represent the parameters of the SVM model that
are learned during training, and εi is a slack variable to allow to construct a
maximum margin hyperplane while misclassifying some training instances. C is
a hyperparameter representing the penalty of misclassifying training instances
and can be set by the user. Finally, ϕ(.) is some unspecified function which trans-
forms the data to a higher, possibly infinite, dimensional space. This convex
optimization problem can be solved using the method of Lagrange multipliers
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and hereto, the Lagrangian to the constrainted optimization problem is defined:

min
||w||

2

2

+ C
N∑
i=1

εi −
N∑
i=1

λi{yi[wϕ(xi) + b]− 1 + εi} −
N∑
i=1

µiεi
�� ��2.9

where λi and µi are the Lagrange multipliers. By reformulating this expression
in function of the Lagrange multipliers, and then solving by numerical techniques
such as quadratic programming, the following classifier is obtained:

y(x) = sign

[
N∑
i=1

λiyiK(xi,x) + b

] �� ��2.10

Herein, K(xi,x) = ϕ(xi) ·ϕ(x) is a positive definite kernel satisfying the Mercer
theorem. The advantage of using a kernel function lies in the fact that the map-
ping function ϕ(.) does not need to be explicitly known. The Mercer theorem
in fact guarantees that a kernel function K(., .) can always be expressed as a
dot product between the constituting input vectors. Typical examples of such
kernel functions are:

K(xi,x) = (xi · x + 1)p (Polynomial kernel)

K(xi,x) = e−||xi−x||2/2σ2

(RBF kernel)

�� ��2.11

The Polynomial kernel has one user defined parameter, the exponent p. If
p = 1, it simplifies to a so-called linear kernel, resulting in a linear decision
boundary in the input space. The Radial Basis Function (RBF) kernel has also
one parameter, σ or the kernel bandwidth, which determines the sensitivity to
perturbations in the training data. The different kernel functions are illustrated
in Fig. 2.5 on a subset of the Pima Indians Diabetes data set, hosted on the
UCI repository4.

Kernel methods have been subject of much recent work in the field of em-
pirical software engineering; see e.g. [88]. An extensive literature overview will
be presented in the next chapters.

2.2.6 Statistical methods

Several methods used in supervised ML research find their origin in the statisti-
cal literature. These include (non) linear regression, logistic regression, discrimi-
nant analysis and Bayesian networks. Note that also other statistical techniques
exist, such as survival analysis and penalized estimation models which further
assume time-related data [211]. Bayesian network learners are discussed in de-
tail in Chapter 4.

(non) Linear regression

Arguably, one of the oldest and most widely applied regression techniques is
Ordinary Least Squares (OLS) regression. This well documented technique fits

4http://archive.ics.uci.edu/ml/index.html
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Figure 2.5: Comparison of kernels

a linear regression function to a data set containing a dependent, ei, and multiple
independent variables, xi(j); this type of regression is also commonly referred
to as multiple regression. OLS regression assumes the following linear model of
the data:

ei = x′
iβ + b0 + ϵi

�� ��2.12

where x′
i represents the row vector containing the values of the ith observation.

β is the column vector containing the slope parameters that are estimated by
the regression, and b0 is the intercept scalar. ϵi is the error associated with each
observation and is used to estimate the regression parameters, β, by minimizing
the following objective function:

min
N∑
i=1

ϵ2i
�� ��2.13

Several (non linear) alternatives have been put forward such as Robust re-
gression and MARS (Multivariate Adaptive Regression Splines), as well as var-
ious forms of data transformations to capture non linear relationships in the
data. These are further discussed in Chapter 3.

Logistic regression

Logistic regression is another well known statistical technique that fits the data
to the following expression:

P (yi = 0|xi) =
1

1 + e−x′
iβ

�� ��2.14

where β is a vector of unknown parameters. Logistic regression typically uses
an iterative maximum likelihood parameter estimation procedure and outputs a
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value between 0 and 1 which can be interpreted as a posterior class probability
[336].

2.2.7 Ensemble learners

While the other ML approaches build a single model (with the exception of
case based reasoning techniques, see also Section 2.2.8), it is possible to pool
the outcome of several models to obtain a more robust final prediction. Hereto,
several approaches exist, including bagging (bootstrapping the data, building
each time a separate model), boosting (iteratively weighting instances according
to the misclassification errors) and stacking (combining different classifiers based
on their performance on a hold-out set). In the domain of empirical software
engineering, specific attention has been given to Random Forest due to its good
performance [118,200].

Random forest

Random forest can be regarded as a classifier which consists of a collection of
independently induced base classifiers which are then combined using a voting
procedure. As originally proposed by Breiman, CART decision trees are adopted
as base classifier [42]. Key in this approach is the dissimilarity amongst the
base classifiers, which is obtained by adopting a bagging procedure to select
the training samples of individual base classifiers and the selection of a random
subset of attributes at each node, and the strength of the individual base models.
More specifically, let {c(Dtr,Θk)}Kk=1 be a collection of K CART decision tree
classifiers and Θk a random vector indicating the data selected for the kth tree.
It can then be shown that an upper bound to the misclassification error is given
by the following expression.

Error∗ ≤ ρ̄(1− s2)/s2
�� ��2.15

ρ̄ represents the average correlation of the votes cast by the base classifiers and
s represents the strength of a set of base classifiers. Due to the randomness of
the bagging procedure, random forest will yield base classifiers which are only
moderately correlated with one another.

More recently, an alternative to random forest was proposed: rotation for-
est. This ensemble technique takes the idea of random forest one step further
by selecting a subset of features and instances, and subsequently applying Prin-
cipal Component Analysis (PCA) hereon as a diversifying heuristic. Typically
however, rotation forest results in base classifiers that are not as diverse as e.g.
random forest and boosting, but on the counterbalance, the PCA procedure
renders the base classifiers more accurate.

2.2.8 Other approaches

Various alternatives to the ones mentioned in the previous sections exist; Arti-
ficial Immune Systems for instance is a learning paradigm based on lymphocyte
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cloning and mutation while Social Network Analysis considers the relationships
between instances as an additional source of information, relaxing the assump-
tion of independently and identically distributed data. One technique often
used in empirical software engineering is instance based learning, sometimes
also referred to as estimation by analogy or Case Based Reasoning (CBR).

Instance based learners

Figure 2.6: Varying the number of analogies,
k=1, 5 and 15

Contrary to other methods,
instance based learning will
not construct an explicit
mapping from input to out-
put space, but will instead
provide an output based on
the most similar cases in the
training set. The distance
function used to calculate
the similarity between an un-
seen instance {xi, yi} and the
instances from the training
set Dtrn is often the Euclid-
ian distance. Irrelevant at-
tributes should be discarded
in this calculation and at-
tributes should be rescaled,
to avoid one attribute dom-
inating all others. E.g. sta-
tistical tests can be adopted
hereto [75]. Other aspects
to consider include the num-
ber of most similar instances
that should be selected and
how the target value of these
cases is transformed into a
prediction of the unseen in-
stance.

Since this approach re-
sembles the way in which ex-
perts form an opinion on e.g.
the required time to com-
plete a software project, it
has been particularly popu-
lar in the software effort esti-
mation literature. Note that
this approach can result in
arbitrary decision boundaries, and depending on the exact setup, can be made
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more robust to idiosyncracies in the training data. Fig. 2.6 visualizes the deci-
sion boundaries derived by instance based learning on the Pima Indians Diabetes
data set, while varying the number of most similar cases.

2.3 Model evaluation

2.3.1 Within data set

Typically, predictive ML involves the use of a training set, Dtrn, from which
patterns are extracted by learning the parameters of a ML model, and a set
of unseen instances or test set, Dts, on which the learned model is validated.
Furthermore, note that several learners exhibit user-adjustable parameters, also
termed hyperparameters, which allow learners to better model data set charac-
teristics; examples include the C and the kernel bandwidth σ in case of SVM
with a RBF kernel or the number of hidden neurons in a MLP model. Then,
it is custom to set a part of the training set aside as independent validation set
on which the impact of different hyperparameter values is assessed.

The data can be split according to various procedures including hold-out
splitting, x fold cross validation, or leave-one-out cross validation. In case of
a hold-out splitting procedure, the data is divided into training and test set,
typically a rato of 2/3 and 1/3 respectively. However, a learner might benefit
from a lucky split, and therefor, this random splitting procedure should be
repeated multiple times, as is e.g. done by Dejaeger et al. [75]. Alternatively,
a cross validation procedure can be employed, splitting the data in x bins of
equal size, using all minus one bins for training and the last bin as a separate
test set. The leave-one-out cross validation procedure is similar in the sense
that there are as many bins as there are samples in the data set. Aspects
like computational effort and the number of instances will dictate the preferred
procedure [175]. As a rule of thumb, we suggest to use the leave-one-out cross
validation procedure if N is smaller than 100. Finally, note the possibility of
using a different procedure for training and tuning of a learner, as is illustrated
in Fig. 2.7.

Furthermore, it should be pointed out that, preferably, the test set contains
no samples also present in the training set [117]. For instance, the often used
NASA MDP data sets exhibit large quantities of repeated instances, which posi-
tively impacts the predictive performance of supervised ML methods. However,
as indicated by Dejaeger et al., the impact of these repeated vectors is limited
[74]. This is also further discussed in Chapter 5.

Regression

Previously, a regression model was defined as a function f mapping instances to
the continuous target, f(xi) : Rn 7→ êi, and a variety of performance measures
has been proposed to gauge the strength of such regression model. Table 2.2
provides an overview of some typical regression metrics. Note that within the
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Dts

Dtrn

D′

trn
Dval

for i = 1 to N do

D →Dtrn+Dts

Dtrn → D′

trn
+Dval

for h = 1 to 10 do //Parameter tuning

c′
h
←learn(c(Dtrn′ , h))

ŷval ← assess(c′
h
,xval)

ph ←performance(yval, ŷval)

h? = argmax(p)

c′
h? ←learn(c(Dtrn, h

?))

ŷi ← assess(c′
h? ,xi)

p←{performance(ŷi, yi)}
N

i=1

leave-one-out cross validation procedure

hold-out split

procedure

Figure 2.7: Validation procedures exemplified

Coefficient of determination R2 = 1-
∑

i(ei−êi)
2∑

i(ei−ē)2

Spearman’s rank correlation rs = 1 -
6
∑

i d
2
i

N(N2−1)

di = △ ordinal ranks

Root mean squared error RMSE =
√

1
N

∑
i(ei − êi)2

Mean absolute error MAE = 1
N

∑
i |ei − êi|

Table 2.2: Overview of regression performance metrics

field of software effort estimation, which in essence corresponds to a regression
problem, a number of alternative metrics are regularly considered, including
those based on the magnitude of relative errors. This can be attributed to
the fact that some metrics suffer from a flaw or limitation and should be used
with caution. E.g. Foss et al. note that both the standard deviation as well
as the logarithmic standard deviation make certain assumptions to whether
the data is homo- or heteroscedastic [101]. R2 and the mean absolute error
(MAE) are on the other hand known to be outlier sensitive [244]. As the debate
on which metric should be preferred is still ongoing, it is common practice to
report on a selection of metrics. Note that the rank reversal problem (a better
performing model mistakenly found to be less accurate) cannot be ruled out, but
by investigating a broad selection of metrics, and considering a robust validation
procedure, this issue can be minimized. A literature review on software effort
estimation, detailing empirical setup and evaluation metrics, is given in Chapter
3.
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Classification

A classification model can be regarded as a function m mapping instances to
real values (scores) on some unspecified scale, m(xi) : Rn 7→ s(xi) ∈ R, and
by setting a threshold t on these scores, a crisp classification can be obtained.
Note that e.g. decision tree learners apply a majority vote at each leaf node to
directly obtain such crisp classification. Based on this dichotomy, a confusion
matrix can be obtained, comparing the number of correctly classified cases to
those misclassified. This confusion matrix serves as the cornerstone to many
of the metrics in use in the domain of software fault prediction [154]. Often,
these ‘single threshold’ metrics neglect the issue of class imbalance and fail to
discriminate between misclassification types. Fig. 2.8 provides an overview of
these single threshold metrics.

Another commonly used tool in the performance measurement of classifiers
is receiver operating characteristic (ROC) analysis [92]. A ROC curve shows the
fraction of the identified faulty instances (the sensitivity) versus one minus the
fraction of the identified fault free instances (one minus the specificity), for a
varying threshold. The classifier corresponding to the dominating ROC curve is
to be preferred; ROC curves can however also intersect one another. Although
ROC curves are a powerful tool for comparing classifiers, practitioners prefer a
simple numeric measure indicating the performance over the visual comparison
of ROC curves. Therefore, single point metrics such as the area under the ROC
curve (AUC) were proposed. ROC analysis is further discussed in the case
study at the end of this chapter; a more recent alternative proposed by Hand,
the H-measure, is introduced in Chapter 4. Also lift charts (known in software
engineering as Alberg diagrams) and cost curves are sometimes considered.

An overview of classification metrics aimed at software fault prediction in
five community flagship journals is presented in Table 2.3. From this overview
can be concluded that the majority of articles are endorsed by single threshold
metrics, although there is a tendency towards the use of alternative metrics such
as Alberg diagrams and the AUC.

Finally, note that many of the above metrics can easily be extended towards
a multiclass setting; this is also illustrated in the KDD case study presented in
Section 2.4.

IEEE Trans. on Software Engineering Year Metrics

Quantitative analysis of faults and failures in a
complex software system

2000 Alberg diagram

Assessing the applicability of fault-proneness
models across object-oriented software projects

2002 correctness
completeness

Empirical validation of object-oriented metrics
on open source software for fault prediction

2005 correctness
precision

Empirical analysis of object-oriented design met-
rics for predicting high and low severity faults

2006 correctness
completeness
precision
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A replicated quantitative analysis of fault distri-
butions in complex software systems

2007 Alberg diagram

Data mining static code attributes to learn de-
fect predictors

2007 pd-pf
balance

Empirical validation of three software met-
rics suites to predict fault-proneness of object-
oriented classes developed using highly iterative
or agile software development processes

2007 accuracy

Empirical analysis of software fault content and
fault proneness using bayesian methods

2007 Alberg diagram
precision
sens.-spec.
fpr-fnr

Using the conceptual cohesion of classes for fault
prediction in object-oriented systems

2008 correctness
completeness
precision

Benchmarking classification models for software
defect prediction: A proposed framework and
novel findings

2008 AUC

Evolutionary optimization of software quality
modeling with multiple repositories

2010 fpr-fnr

A general software defect-proneness prediction
framework

2011 balance
AUC

Which crashes should I fix first?: Predicting top
crashes at an early stage to prioritize debugging
efforts

2011 accuracy
precision-recall
F-measure

Towards comprehensible software fault predic-
tion models using Bayesian network classifiers

2012 AUC
H-measure

Software Quality journal

Empirical validation of object-oriented metrics
for predicting fault proneness models

2010 recall
sens.-spec.
F-measure

An industrial case study of classifier ensembles
for locating software defects

2012 precision
pd-pf
balance

Predicting high-risk program modules by select-
ing the right software measurements

2012 AUC

Journal of Systems and Software

The prediction of faulty classes using object-
oriented design metrics

2001 accuracy
J-coefficient
AUC

Practical assessment of the models for identifi-
cation of defect-prone classes in object-oriented
commercial systems using design metrics

2003 Alberg diagram
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Predicting defect-prone software modules using
support vector machines

2008 accuracy
precision-recall
F-measure

Applying machine learning to software fault-
proneness prediction

2008 accuracy

Mining software repositories for comprehensible
software fault prediction models

2008 accuracy
sens.-spec.

The effectiveness of software metrics in identi-
fying error-prone classes in post-release software
evolution process

2008 AUC

Increasing diversity: Natural language measures
for software fault prediction

2009 Alberg diagram

A systematic and comprehensive investigation of
methods to build and evaluate fault prediction
models

2010 accuracy
precision-recall
fpr-fnr
AUC
cost effectiveness

A symbolic fault-prediction model based on mul-
tiobjective particle swarm optimization

2010 accuracy
precision-recall
F-measure
AUC

On the ability of complexity metrics to predict
fault-prone classes in object-oriented systems

2010 AUC

Comparing case based reasoning classifiers for
predicting high risk software components

2010 J-coefficient

Empirical Software Engineering

Uncertain classification of fault-prone software
modules

2002 accuracy

Comparative assessment of software quality clas-
sification techniques: An empirical case study

2004 fpr-fnr

Assessment of a new three-group software qual-
ity classification technique: An empirical case
study

2005 fpr-fnr

Techniques for evaluating fault prediction mod-
els

2008 Alberg diagram
accuracy
precision
sens.-spec.
F-measure
J-coefficient
geometric mean
balance
AUC
cost curves

On the relative value of cross-company and
within-company data for defect prediction

2009 pd-pf
balance
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Calculation and optimization of thresholds for
sets of software metrics

2011 F-measure
Matthews corr.

On the use of calling structure information to
improve fault prediction

2012 Alberg diagram

Information and Software Technology

Object-oriented software fault prediction using
neural networks

2007 accuracy
correctness
completeness

Practical considerations in deploying statistical
methods for defect prediction: A case study
within the Turkish telecommunications industry

2010 pd-pf
balance

An ant colony optimization algorithm to improve
software quality prediction models: Case of class
stability

2011 accuracy

Transfer learning for cross-company software de-
fect prediction

2012 precision-recall
AUC

Fault prediction and the discriminative powers of
connectivity-based object-oriented class cohesion
metrics

2012 precision-recall
AUC

Table 2.3: Overview of classification metrics in software fault prediction

Comprehensibility

As opposed to predictive performance, there exists no single point metric to
quantify the understandability of a model. Typically, comprehensibility is re-
garded as the extent to which there exists a mental fit with the classification
model and is thus somewhat subjective by nature [15]. It is argued that the
main drivers of this mental fit are representation type and the specific task
requirements. Previous research further indicated that individual differences
such as prior experience and education also have an impact on the perceived
comprehensibility of the decision model as well as model size, contributing to
its subjectiveness [30]. Interesting in this regard is the work of Huysmans et
al. who considered a modified task-representation fit model, see Fig. 2.9 [145].
It was found that, independent on the representation format (decision tables,
univariate/multivariate decision trees and propositional IF-THEN rules were
considered), the proportion of correct answers to both classification and logi-
cal questions dropped sharply for more elaborate models, questioning whether
such degree of interpretability is acceptable in practical applications where these
models must be validated or where explanatory power is deemed important.

In the second part of this chapter, a case study elucidating how valuable
insights were obtained from data in the education domain is presented. Com-
prehensibility was a key requirement imposed by the management of the partici-
pating school, and therefore, especially ML based models were investigated. The
reason being that one should be able to understand how a model reaches a spe-

52



m(xi) : R
n 7→ R

c(xi) : R
n 7→ {0, 1}

class 0

−∞ +∞
t?

class 1

class 1

class 0

function

classifier

class 0 class 1

class 0 TN FR

class 1 FN TP

predicted

a
ct
u
a
l

accuracy TP+TN

N

sensitivity TP

TP+FN

prob. of detection (pd)

recall

specificity TN

TN+FP

1-prob. of false alarm (pf)

correctness TP

TP+FP

precision

completeness #faults in tagged modules
#faults in total system

F-measure precision×recall
precision+recall

J-coefficient sens. + spec. - 1

balance 1-

√
PF 2+(1−PD)2

√
2

Figure 2.8: Overview of classification metrics

Figure 2.9: The modified task-representation fit model

cific decision and check whether the model is in line with previous assumptions
on what drives perceived education quality.

2.3.2 Cross data set

It has been reckoned that the search for a universal predictor to software effort
or faults is unlikely to be fruitful, as conclusion instability is an often recurring
thema in empirical software engineering research [228]. On the other hand, data
in this domain is often hard and time consuming to collect, if not impossible, ne-
cessitating the appliance of data from other projects or releases. Cross company
or cross project studies consider data stemming from other teams, possibly de-
veloping software in unrelated domains while cross release validation questions
the stability of conclusions across releases of the same software project. The
concepts of cross company/project and cross release validation has attracted
some interest, reporting very mixed results.
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As explained in Chapter 1, organizations such as ISBSG and QSM have col-
lected rich data relating to the software development effort in various economic
sectors and countries. Kichenham et al. juxtaposed 10 cross company effort esti-
mation studies, listing 4 studies that found no difference between cross company
and within company data, while 4 others reported opposite results. 2 studies
were inconclusive in this regard. As such, it was concluded that ‘It is clear
that some organizations would be ill-served by cross-company models whereas
others would benefit’ [178]. More recently, Kocaguneli et al. applied a relevance
filtering prior to model training on the NASA, Cocomo81 and Desharnais data
sets (see also Chapter 3), obtaining more promising results. More specifically, it
was conjectured that new projects follow similar practices as historical projects
and should require a similar development effort [184]. Echoing the findings of
Koceguneli et al., Menzies et al., addressing the question whether locality is
important during learning effort and defect models, stated that ‘it was found
that in 18 out of 20 local treatments, the treatments were completely different
to the treatments learned from a global analysis of all the data’ [228]. Both fault
(Xalan and Lucene) and effort (China and NASA) data sets were scrutinized in
this study.

Recently, the notion of concept drift for software fault prediction was in-
troduced by Ekanayake et al. [87], underscoring the importance of out-of-time
or out-of-universe validation to this domain. Zimmermann et al. for instance,
investigating 12 real world applications including OSS like Eclipse and Firefox
and CSS such as Internet Explorer, found that cross project fault prediction
failed in 96.6% of all cases. Determinants of successful cross project validation
were data (e.g. number of observations) and process characteristics (e.g. code
churn or number of deleted lines). Jureczko et al. continued along the same
line, applying a clustering on software project characteristics to identify possi-
ble sources of cross company data [214]. Turhan et al. analyzed NASA MDP
data, in combination with data stemming from a Turkish white good manufac-
turer. Using a relevance filter, as was also done by Koceguneli et al. [184], a
two step approach was proposed. When no company data is available, public
repository data can be used after passing it through a relevance filter; however,
as proprietary data becomes available, the use of cross company data should be
phased-out, relying on own data [317]. More recently, He et al. revisited this
topic, looking only at OSS data, and found evidence assenting to the work of
Turhan et al., stating that in a best case scenario, even better performing fault
prediction models can be built on carefully selected data from other projects
than those induced on in-project data [134]. Cross release defect prediction has
also been investigated in several studies, as this practice coincides with the nat-
ural life cycle of a software package. E.g. Ostrand et al. discussed a software
fault prediction model in AT&T labs that ran for 4 consecutive years, spanning
17 releases [251]. Also Arisholm et al. [12] analyzed a legacy system of a large
telco provider across 17 releases while Koshgoftaar et al. [173], also relying on
data stemming from a telco provider, considered 4 consecutive releases. They
typically found that cross release prediction is feasible; e.g. Koshgoftaar et al.
calculated the return on investment of using such a model’s predictions to be
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as high as 4,266%.

2.3.3 Statistical inference

Upon obtaining empirical results, a statistical framework should be instated
to allow for inferencing on the relative performance of different treatments.
As empirical results are seldom normally distributed, the nonparametric testing
procedure described in Dems̆ar [77] is often applied in such setting. The first step
of this procedure consists of the Friedman test [105] which is a nonparametric
equivalent of the well known ANOVA test (ANalysis Of Variance). The null
hypothesis of the Friedman test states that all treatments are equivalent. The
test statistic is defined as:

χ2
F =

12P

k(k + 1)

[∑
m

AR2
m −

k(k + 1)2

4

] �� ��2.16

with ARm the average rank of treatment m = 1, . . . , k over P test attempts.
Under the null hypothesis, the Friedman test statistic is distributed according
to χ2

F with k − 1 degrees of freedom, at least when P and k are big enough
(P > 10 and k > 5). Otherwise, exact critical values should be used based on
an adjusted Fisher z-distribution.

Subsequent to the rejection of the Friedman test, an appropriate post-hoc
test can be performed. One possibility is the Bonferroni-Dunn test which com-
pares a single treatment to all others, while a Nemenyi test makes a pairwise
assessment across treatments; the peculiarities of each of these specific post-hoc
tests are presented in Chapters 3 and 4 respectively. Chapter 5 additionally
presents an alternative statistical testing procedure which is able to better dis-
criminate between treatments.

2.4 The KDD process by example

In this short case study, we provide an example of the Knowledge Discovery
in Databases (KDD) process, which can be defined as the process entailing
the collection of raw data and further refining it, resulting in a data set which
can be made subject to analysis by ML learning techniques. The outcome can
subsequently form the basis for managerial decisions of operational or strategic
nature. The KDD process thus involves more than the mere application of some
learners on some data set, but also includes aspects such as data preprocessing,
and outcome interpretation, be it as a set of statistical analyses or expert user
validation.

2.4.1 Context

Customer orientation is essential in many businesses. This case study inves-
tigates how data mining techniques can be used to enable a more customer
oriented management in the education industry. Students’ satisfaction with
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training is important for educational institutions in order to attract new stu-
dents and to retain the current student population, especially during periods of
crisis when tuition fees are increased as a last option to ensure the sustainability
of educational systems. Moreover, student mobility is steadily increasing as the
consequence of a search for high value education, which is also facilitated by a
number of educational system reforms such as the Bologna Treaty which ensures
the inter-country compatibility of academic degrees in Europe. As a result, the
number of students going abroad for their university education in the last three
decades has more than quadrupled, from 0.8 million in 1975 to 3.3 million in
2008 [247]. In addition, students tend to take many more countries into consid-
eration. While the USA still attracted about 24% of all international students
in 2000, this figure decreased to 18.7% by 2008. Countries such as France, Aus-
tralia, Italy and Spain on the other hand have experienced a clear increase in
the number of international students [247]. The students’ heightened mobility
and focus on education quality have opened a new globalized competitive arena
of opportunities and threats for educational institutions.

Responding to this challenge, educational institutions are collecting increas-
ing amounts of data concerning their education quality by evaluating their pro-
grams, courses and training. The collected data can be used to build a math-
ematical model to identify crucial factors determining the perceived education
quality by students and as such, can assist educational institutions in better
responding to the student needs and attracting more (international) students.
Such a model can be constructed using the various techniques discussed in Sec-
tion 2.2, including tree/rule based learners which typically construct a piecewise
linear model or nonlinear techniques such as techniques based on the principle
of structural risk minimization or neural networks [301].

2.4.2 Evaluating class satisfaction by the KDD process
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Figure 2.10: Illustration of the KDD process and links to the sections in this
dissertation
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Knowledge discovery from databases (KDD) is typically a time consuming
process which consists of several steps, moving back and forward between the
business expert (the management of the educational institution) and the busi-
ness analyst responsible for the induction of the mathematical models, see Fig.
2.10. The first step in this process consists of gathering relevant data. Here, it is
decided what will be measured and at which moment during the academic year.
Typically, data is collected by surveys based on the student reactions forms
evaluation method, questioning students about their course satisfaction. These
evaluation forms are sometimes also known as ‘happy sheets’, ‘smile sheets’ or
‘reactionnaires’ [196], see also Section 2.4.3. As a second step, the resulting
data set is preprocessed by first cleansing the data, addressing issues such as
missing values, discretisation and recoding of categorical attributes. Following
the data cleansing, an input selection procedure can be applied, reducing the
number of attributes to learn from, to get an unbiased and relevant set of at-
tributes [34]. The precise data preprocessing procedure is detailed in Section
2.4.4. The third step consists of the actual data modeling. A selection of possi-
ble modeling techniques has to be made based on the characteristics of the data
set and requirements of the model, e.g. comprehensibility and computational
efficiency (Section 2.4.5). Furthermore, the model is evaluated using one or
more different metrics. In this case study, both classification accuracy via notch
difference diagram and multi class ROC analysis are used, see Section 2.4.5. In
a fourth step, the induced model is returned to the management of the cooper-
ating educational institutions to validate whether the model is in line with their
expectations and previous knowledge. This requires a basic understandability
of the model. Next, a prototype of the model could be developed and deployed
into the ICT architecture of the educational institution. However, as the model
serves to aid managerial decisions at a strategic level, the implementation of
a model for frequent operational use is considered less important in this case
study. Finally, the model should be reevaluated on a regular basis to account
for changes in the way students perceive the quality of the courses [21]. Note
that if the results in one of the steps of the process are not satisfactory, one
returns to a previous step in the process.

2.4.3 Data collection

Note that in the paper that serves as the basis of this text, two business edu-
cational institutions (IESEG School of Management (Lille) in France and Uni-
versity of Verona in Italy) are analyzed. For brevity however, the focus in this
text lies with the results from the IESEG School of Management. Please refer
to [73] for additional details.

Institution background

The IESEG School of Management has a 3+2 educational program in place
in line with the Bologna treaty framework. Table 2.4 provides an overview of
its main characteristics. The school is a private French teaching and research
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IESEG

Educational program
Length educational program 5 years (3+2)
Type of enrolment written and oral selection
Internships in program minimum 10 months

Student population
Number first year students 500 out of 6000 applicants
Total number of students 2300

International orientation
International oriented professors ± 75%
Courses taught in English ± 80%

Table 2.4: Overview of IESEG School of Management

institution (‘Grand Ecole’) with relatively high tuition fees which is part of
the Lille Catholic University. Being characterized by a strong international
orientation, applicants are subjected to an oral and written selection procedure.

Data set details

At IESEG, students received anonymous paper questionnaires in the time pe-
riod between the end of a course and the final exam. Although filling out the
questionnaire was not compulsory, generally more than 90% of students enrolled
for a class returned the questionnaire. This way, about 15.000 class evaluation
forms were gathered during the academic year 2007-2008. The questionnaire
follows the traditional student reactions form format [196] and aims at mea-
suring Kirkpatrick’s first level of students’ overall training satisfaction (OTS).
In total, the data concerns 199 courses of which 48% belonged to the Bachelor
cycle (the first 3 years) and 52% to the M.Sc cycle (the last two years). Hence,
the courses’ contents covered a wide spectrum of topics. Students had to an-
swer questions by giving a score from 1 (strongly disagree) to 5 (strongly agree).
For illustrative purposes, these questions are shown in Table 2.5. Besides these
questions, a number of control questions were included in the questionnaire.

Following prior research in the field, we made four aggregated constructs
which are believed to influence the overall training satisfaction (OTS): the per-
ceived trainer performance (PTP), perceived training efficiency (PTE), per-
ceived ease of learning (PEL) and perceived usefulness of training (PUT) [110,
210, 273]. The mapping of the individual questions to the 4 constructs is indi-
cated on the right of Table 2.5, while the overall training satisfaction (OTS) was
measured using Q17. Furthermore, the IESEG management provided a number
of master-data variables about the professor and about the course. As such,
a total of 41 attributes was taken into account (37 univariate attributes and 4
aggregated constructs).
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Code Description

Q0 Were you interested in this topic before the
start of the class?

p
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Q1 Were objectives well explained at the begin-
ning of the class?

Q2 Was the importance of the class in the edu-
cational program clear?

Q3 Was the knowledge you had before the class
appropriate to be able to follow?

Q4 Was the pace of the class appropriate?

p
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f

lea
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g

Q7 Was the workload of the class in line with its
number of ECTS credits?

Q8 Was the class understandable?

Q18 Do you feel like you master the material that
was taught?

Q5 Was the course well structured?

p
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cy

Q6 Was the number of contact hours with the
professor sufficient?

Q9 Was the supporting material helpful to un-
derstand the subject?

Q10 Was the manual well adapted to the class?

Q12 Was the course atmosphere pleasant?

p
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er

p
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n
ce

Q13 Was the course presented clearly?

Q14 Was the class presented in a convincing and
in a dynamic way?

Q15 Did the teacher follow up on how good you
understood the class?

Q11 Are the evaluation modalities appropriate?

Q16 Was the teacher sufficiently available outside class
hours?

Q17 Overall, are you satisfied with the class?

Q19 Would you say you have worked very hard for this
class?

French or international student Binary

Number of sessions attended 4 categories

Table 2.5: Student reactions form attributes IESEG data set
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2.4.4 Data preprocessing

As indicated in Fig. 2.10, an important step before the actual development of
an education evaluation decision model, is data preprocessing. To fairly assess
the different machine learning techniques, the following procedure is used for
both data sets.

Data cleansing

Data collected through questionnaires is rarely directly usable as input for data
mining techniques. Hence, prior to data analysis, a number of data cleansing
activities need to be performed.

As we intend to evaluate courses instead of the preferences of individual
students, the collected data is aggregated per course by taking the average of
all students following a specific course. The target (i.e. the overall training
satisfaction with a course) is first discretised into four levels, one being the
lowest and four the highest. As some techniques are unable to cope with missing
values (e.g. logistic regression), these values are replaced by the median of that
attribute in case of continuous attributes. Otherwise, in case of categorical
attributes, mode imputation is used. If more than 10% of the values are missing,
the instances associated with the missing values are removed from the data
set. Instances with missing values for the target attribute are also discarded.
Categorical attributes with a specific ordering in the categories are encoded
using thermometer encoding, see Table 2.6; otherwise, dummy encoding is used.

Original
input

Categorical
input

Thermometer outputs
I1 I2 I3 I4

age < 30 1 0 0 0 0
30 ≤ age < 40 2 0 0 0 1
40 ≤ age < 50 3 0 0 1 1
50 ≤ age < 60 4 0 1 1 1
age ≥ 60 5 1 1 1 1

Table 2.6: Thermometer encoding

Input selection

An often recurring finding in data mining literature is the difficulty to learn
from high dimensional data [75, 230, 325]. Given a number of observations, the
search space increases exponentially with the number of available features and
several types of solutions have been proposed hereto. One possible approach
is to apply a filter prior to data analysis, selecting a subset of most promising
features using a heuristic. Such approach has the advantage of being compu-
tationally inexpensive and in addition, unlike for instance factor analysis or
principal component analysis, the selected features remain unaltered. The lat-
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ter is especially important as models built on newly created features consisting
of a (linear) combination of other features can be hard to interpret.

In this study, the minimum Redundancy, Maximum Relevance (mRMR)
filter, introduced by Peng et al., is adopted [255]. This filter is based on concepts
from Shannon’s information theory [279] to express the information concerning
the target contained in a set of independent attributes using the concept of
mutual information. Let Sm ⊂ X be a feature subset containing m attributes,
x(j), j = 1, . . . ,m. The mRMR filter combines both a maximum relevance and
a minimum redundancy criterion. The relevance of a subset S is defined as:

D =
1

|S|
∑

x(j)∈S

I(x(j); y)
�� ��2.17

while the redundancy between features within the subset S is defined as:

R =
1

|S|2
∑

x(j),x(j′)∈S

I(x(j);x(j′)) .
�� ��2.18

I(x(j);x(j′)) represents the mutual information between two random variables
x(j) and x(j′) and is defined as follows:

I(x(j);x(j′)) =
∑
j,j′

p(x(j), x(j′))log2
p(x(j), x(j′))

p(x(j))p(x(j′))
.

�� ��2.19

The mRMR filter finally combines both relevance and redundancy into a single
expression:

max Φ(D,R) = D −R .
�� ��2.20

Using this filter approach, a subset of the ten best features is selected each time
for model construction.

2.4.5 Data modeling

Technique selection

A key requirement to use data mining models in supporting school’s manage-
ment decisions is the aspect of comprehensibility; i.e. one must be able to un-
derstand how a model reaches a specific decision. Previous studies from other
domains indicated that nonlinear techniques often outperform linear models
such as tree/rule based models [23,200]. This can be attributed to the fact that
these techniques allow to construct arbitrary decision boundaries in the output
space. However, the resulting models are often difficult to understand; indeed,
they are even called ‘black box’ models [10]. Likewise, in order to better as-
sist the school’s management in taking correct decisions, an easy to understand
model that gives insight into the factors that are most important to the stu-
dents is preferred. Furthermore, a comprehensible model would allow to check
whether the model is in line with previous assumptions on what drives perceived
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education quality [291]. For instance, it was assumed at IESEG that professor
availability is a very important driver of student satisfaction. However, if this
attribute would not be withheld in our analyses, management could decide to
change the policy towards encouraging academic staff to always work in the of-
fice, giving them more flexibility. Balancing out both aspects, a selection of ML
algorithms in combination with three nonlinear techniques (logistic regression,
MLP and SVM) were investigated. Fig. 2.11 shows the positioning of these
techniques in the general taxonomy of Section 2.2. Remark that most classifiers
can directly be applied to a situation with more than two classes (i.e. a situa-
tion with yi ∈ {1,. . . , K}). However, some techniques such as support vector
machines are less suited to cope with more than two classes and alternative
procedures to use these techniques should be considered [8].

The following paragraphs relate to the extension of dichotomous learners
towards a multi class environment. Also the use of a simple pedagogical rule
extraction approach to perform knowledge elicitation from nonlinear models is
detailed. We commence however with a discussion on the OC1 learner, which is
a multivariate decision tree learner able to induce flexible decision boundaries5.

Multivariate trees: OC1
In contrast to univariate tree learners such as CART and C4.5, Oblique Classifier

5CART, LSSVM and logistic regression are implemented in the MatlabTM en-
vironment, www.mathworks.com. In case of LSSVM, an additional open source
toolbox is used (LS-SVMlab, http://www.esat.kuleuven.be/sista/lssvmlab). OC1
is implemented using a publicly available toolbox developed for UNIX systems
(http://www.cbcb.umd.edu/∼salzberg/announce-oc1.html).
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1 (OC1) tries to find a hyperplane of the following form:

n∑
j=1

ajx(j) + an+1 = 0
�� ��2.21

with aj ∈ R [243]. By allowing additional flexibility in constructing the decision
boundary, the resulting trees can potentially be both smaller and more accu-
rate at the expense of decreased comprehensibility [145]. The first algorithm
allowing oblique splits was CART with Linear Combinations [43], and OC1 is
an algorithm which boosts several improvements over this algorithm. At the
heart of OC1 lies the ‘randomized perturbation’ algorithm. First, OC1 tries to
find the best axis parallel split, and will then perturb the resulting hyperplane
by considering a single attribute at a time, fixing all others. Once the optimal
value for this attribute has been established, the algorithm continues by tak-
ing the next attribute until either a maximum number of iterations has been
reached or the perturbation fails to result in a decrease of impurity. OC1 also
incorporates several mechanisms to avoid getting stuck in a local minimum; e.g.
by adding a vector with random values to the coefficients of the hyperplane or
taking different initial values. In this case study, both OC1 and CART use the
Gini diversity index during tree construction, see Eq. 2.2. This algorithm has
previously been applied in several domains [103,239,274].

Multi class SVM
By nature, some algorithms (e.g. SVM [322] or AdaBoost [102]) can only dis-
criminate between two classes; however, by adopting a different learning schema,
these approaches can still be used in case of more than two classes. Hereto, the
multiple classification problem will be decomposed into several binary classifi-
cation problems. There are many approaches to this decomposition; the most
straightforward method is to consider each class separately and compare it to
all other classes. This is referred to as a one versus all approach. Hastie and
Tibshirani [132] suggested a different approach in which all pairs of classes are
compared to each other (one versus one). A third approach suggested in [79]
makes use of error correcting output codes in an attempt to make the final
classification more robust to binary classification errors.

In this case study, we adopted the use of a one versus one learning schema
with majority voting to determine the final classification. A total of K!

2!(K−2)! =
(K−1)K

2 separate models will thus be estimated, considering each time only the
instances of two particular classes. These models can be combined to produce
class probability estimates by means of a voting procedure:

pk = 2

K∑
k,r=1 (k ̸=r)

I(Sk > Sr)

K(K − 1)

�� ��2.22

where pk is the probability of belonging to class k and I(x) = 1 if x is true and 0
otherwise. Sk is the score of belonging to class k predicted by the SVM models.
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Note that the least squares support vector machines (LS-SVM) in this study
differs to the the SVM discussed in Section 2.2.5 in the sense that it directly
solve a set of linear equations [299]. Hereto, equation 2.8 is reformulated as
follows.

min ||w||
2

2
+ C

∑N
i=1 εi

s.t. yi[wϕ(xi) + b] = 1− εi, i = 1, . . . , N

�� ��2.23

Rule extraction
It is argued by e.g. Fung et al. that adding even limited explanatory power
can positively influence the acceptance of decision models [107]. This is es-
pecially important in the presented situation since the induced models are to
be validated by the management of the educational institutions, cfr. Section
2.4. It is difficult, if not impossible, to understand the inner workings of non-
linear models such as SVM and neural networks. In an attempt to combine
the good comprehensibility of tree/rule based techniques and the classification
performance of nonlinear models, a number of rule extraction algorithms have
been proposed [22, 26]. These rule extraction techniques are often categorized
into pedagogical and decompositional rule extraction techniques [10]6. Decom-
positional techniques extract rules at the level of individual components of the
black box technique (e.g. at the level of support vectors in a SVM or activation
values in a NN) while pedagogical techniques treat the underlying classifier as a
black box. The latter approach can thus be used independently of the nonlinear
technique.

A simple pedagogical approach is adopted, using the CART algorithm of Sec-
tion 2.2.1. First, the nonlinear model is trained. Then, we proceed by changing
the class labels of the original data set to the value predicted by the nonlinear
model. This updated data set is finally presented to the CART algorithm, ob-
taining a (more comprehensible) CART tree. Due to the equivalence between
trees and rule sets [145], this approach can be considered as a pedagogical rule
extraction procedure. This approach has previously been used in [27,220].

Model induction

The data set is randomly partitioned into two disjoint sets, i.e. a training and
a test set consisting of respectively 2/3 and 1/3 of the observations. The model
is induced on the training set while the independent test set is used for model
evaluation. To account for a potential bias introduced by the holdout split, see
also Section 2.3.1, this procedure is repeated twenty times as it is argued by
Kirsopp et al. that ‘ideally more than 20 sets should be deployed’ [175].

Furthermore, some techniques have adjustable parameters, also referred to
as hyperparameters, which enable a model to be adapted to a specific problem.
When appropriate, default values are used based on previous empirical studies

6Sometimes also a third category of rule extraction techniques termed ‘eclectic’ is defined,
incorporating elements from both pedagogical and decompositional rule extraction techniques
[306].
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and evaluations reported in the literature. If no generally accepted default pa-
rameter values exist, these parameters are tuned using a grid-search procedure.
A set of candidate parameter values is defined and all possible combinations are
evaluated by means of a split-sample setup. The models are induced on 2/3 of
the training data and the remainder is used as a validation set. The performance
of the models for a range of parameter values is assessed using this validation
set. The parameter values resulting in the best validation performance are se-
lected and a final model is trained on the full training set. The performance
metric used for hyperparameter tuning is the overall classification accuracy.

Model evaluation

The induced education evaluation models are compared to each other both
in terms of performance and comprehensibility, which is an often overlooked
criterion during model selection.

Classifier performance
Possibly the most straightforward method of measuring classifier performance
is the use of an overall accuracy measure such as, in case of a dichotomous
target, the percentage of correctly classified (PCC) instances. The PCC can
be obtained by taking the sum of all diagonal elements of the confusion matrix
and dividing it by the total number of instances. This concept can easily be
extended to a multi class context, in which each cell (k, r) in the confusion
matrix represents the number of instances belonging to class k which are labeled
as class r instances. In this calculation, every instance is assigned to the class
associated with the highest class membership value across all K classes.

Related to the PCC concept is the use of notch difference diagrams, which
originates from the field of credit scoring [9]. The PCC tacitly makes the impor-
tant assumption of equal misclassification costs for the various different kinds of
misclassification, while it is observed that such assumption is in fact only rarely
suitable [127]. Assuming a natural ordering in the values taken by the target,
classifying a class 1 instance as belonging to class 4 is indeed a more grave error
than classifying the same instance to belong to class 2, which results only in
a 1 notch difference between the actual and predicted value. Hence, a notch
difference diagram which explicitly reports on the different levels of misclassi-
fication provides more information than the percentage of correctly classified.
Both concepts are illustrated with the SVM classifier on the publicly available
Teacher Assistant Evaluation data set, see Fig. 2.13. As this data set was not
collected using student reaction forms, it was deemed inappropriate to validate
our findings, and is only included to illustrate concepts.

A second tacit assumption made if using the PCC metric to compare dif-
ferent classifiers, is the fact that the class distribution (the class priors) would
be constant over time and relatively evenly balanced [260]. While it is the-
oretically possible to calculate both the correct misclassification costs and the
correct class distribution, this is only seldom done [41,56]. If a classifier discrim-
inates between two classes (e.g. between 0 and 1) and produces a continuous
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Table 2.7: Illustration of metrics: confusion matrix SVM model
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Figure 2.12: Illustration of metrics: notch difference diagram
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Figure 2.13: Illustration of metrics: classification of SVM classifier
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output (e.g. a score indicating the posterior class probability of an instance),
another evaluation framework can be used: receiver operating characteristics
(ROC) analysis [86]. The use of ROC analysis effectively decouples classifier
performance from assumptions concerning classification costs and class distri-
bution [260]. The ROC space is a two dimensional plot of the true positive rate
(also referred to as the ‘hit rate’) on the Y axis against the false positive rate
(the ‘false alarm rate’) on the X axis. Every discrete classification corresponds
to a specific true positive and false positive rate, and by varying the threshold
on the continuous output of the classifier to predict the class membership, dif-
ferent operating points can be obtained. Plotting these points in ROC space
gives rise to the ROC curve which depicts the trade off between benefits (true
positives) and costs (false positives). The optimal classifier passes through the
point (0,1) while random classification would result in a diagonal line, x = y
[92]. In order to better compare different ROC curves, a single scalar value is
often used, i.e. the area under the curve (AUC or AUROC). The AUC corre-
sponds to the portion of the area of the unit square that lies underneath the
ROC curve, hence the AUC lies always between 0 and 1. As random guessing
results in a diagonal line in ROC space with a corresponding AUC of 0.5, any
realistic classifier should have an AUC higher than 0.5. The AUC has an inter-
esting statistical property; that is, the AUC is equivalent to the probability that
a randomly chosen instance of class 1 would have a higher estimated probability
of belonging to class 1 than a randomly chosen instance of class 0. It can be
shown that the AUC is equivalent to the Wilcoxon ranked sum test [129]. This
allows to calculate the AUC directly from the scores outputted by the classifier,
without the need of first plotting the ROC curve. Let {f1,. . . , fn0} and {g1,. . . ,
gn1
} be the scores predicted for the n0 negative and the n1 positive instances

in the test set respectively. Assume a high score indicates a high probability
of belonging to the positive class. As the AUC is equivalent to the Wilcoxon
ranked sum test, it can be estimated by simply counting the number of pairs
of positive and negative instances such that the former has a higher score than
the latter:

ÂUC = Â =
1

n0 × n1

n0∑
i=1

n1∑
j=1

Iij
�� ��2.24

where Iij equals 1 if gj >fi. Alternatively, by combining the scores for the pos-
itive and negative instances, and ranking them in ascending order, the estimate
of the AUC can be rewritten as:

Â =
S1 − n1(n1 + 1)/2

n0 × n1

�� ��2.25

where S1 is the sum of ranks of all positive instances.
While the AUC was originally only defined in case of binary classification

tasks, a number of extensions towards a multi class context have been proposed
in the literature. One of the earliest extensions in a three class context was
done by Mossman [241], who plotted the true positive rates for each of the three
classes while varying the classification threshold. This way, a ROC surface can
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be obtained and by taking the volume under the surface, a three class alternative
to the AUC can be calculated. Ferri et al. later extended this approach to
obtain ROC surfaces for problems with more than 3 classes [97]. A different
approach has been taken by Hand and Till, suggesting the calculation of a multi
class AUC by combining several binary AUC values, called the ‘M index’[127].
This straightforward extension of the binary case is selected in this study as it
inherits the good properties of the binary AUC such as independence of class
distribution and misclassification costs.

The M index takes the one versus one principle explained in Section 2.4.5,
estimating the AUC for each possible pairwise combination of classes. Let k
and r ∈ {1,. . . , K} be two class labels, k ̸= r and consider only instances from
the test set belonging to either class k or class r. By considering the estimated
probabilities of belonging to class k, an estimation of the discriminative potential
between class k and class r can be obtained:

Â(k | r) =
Sk − nk(nk + 1)/2

nk × nr

�� ��2.26

where Sk is the sum of the ranks of all class k test instances and nk and nr the
number of k class test instances and r class instances respectively. Â(k | r) can
be interpreted as the probability that a random instance of class k will have
a higher probability of belonging to class k than a random instance of class r.
Similarly, Â(r | k) can be defined in terms of probability of belonging to class
r. Note that, in the case of more than two classes, Â(k | r) ̸= Â(k | r). This
problem can be circumvented by taking the average of both values as a measure
of separability between both classes:

Â(k, r) = [Â(k | r) + Â(r | k)]/2 .

The M index which gives the performance of the classifier in separating the K
classes is then finally defined as:

M =
2

K(K − 1)

∑
k<r

Â(k, r) .

Classifier comprehensibility
As opposed to classifier performance, there exists no single point metric to
quantify the understandability of a model [145]. As indicated in Section 2.3.1,
comprehensibility is often regarded as the extent to which there exists a mental
fit with the classification model and is thus somewhat subjective by nature [15].
It is argued that the main drivers of this mental fit are representation type and
size of the model.

In this study, a number of different representation formats are under inves-
tigation (tree/rule based models, linear and nonlinear models). It is believed
that symbolic representations (i.e. tree or rule based formats) are more compre-
hensible as they allow to visualize the resulting models [234]. A second aspect
influencing comprehensibility is size of the model; it is argued by e.g. Domingos
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et al. that smaller, less complex models are to be preferred [80]. However, the
exact relationship between comprehensibility and representation size has, to the
best of our knowledge, not been thoroughly investigated so far. We report for
each of the tree based models the number of leaf nodes, which is equivalent to
the number of rules minus one (a default rule) in the equivalent rule set.

2.4.6 Results

In the first paragraph, the empirical results of applying the different techniques
on the IESEG data set are shown. Equally important to the observed perfor-
mance is the aspect of comprehensibility. As such, the decision tree selected by
the management of IESEG is dissected afterwards.

Empirical results

In Table 2.8, the results of the IESEG data set are shown. The best perfor-
mances are displayed in bold face script. Results found not to be significantly
different from the best one at the 1% level with respect to a paired t-test are
indicated in italic script while the others are in normal script. The standard
deviation over the 20 hold out splits is provided between brackets. It can be
observed that logistic regression consistently performs best, while, depending on
the data set, nonlinear techniques do not perform significantly worse. Statisti-
cal techniques such as logistic regression (logit) result however in mathematical
models which may be not fully comprehensible to the institution’s management
[69]. Comprehensible, univariate decision trees (i.e. CART) on the other hand
are less able to capture the underlying relationships in the data sets, indicating
the existence of nonlinear relations. By applying rule extraction as described
in Section 2.4.5, an increase of the CART decision tree performance can be ob-
served while at the same time reducing the complexity of the resulting model
(i.e. the number of rules).

The final univariate decision trees presented to the institution’s management
are obtained by taking the complete data set as training data [334]. To account
for potential overfitting, the results of the final decision trees have been com-
pared to the results obtained on the 20 independent hold out splits. It can be
observed that the results of the final decision trees are in line with the out of
sample performance reported in Table 2.8, indicating the absence of overfitting.
It should also be noted that built-in pruning procedures were used to render the
trees less susceptible to overfitting.

Comprehensibility
In total, four univariate decision trees were presented, being the CART tree and
the trees obtained as the result of the rule extraction procedure. It was argued
by the management that decision models that jointly consider multiple variables
(i.e. OC1, neural networks, logit and LS-SVM), while better performing than
univariate decision trees, were less feasible as managerial aids. Hence, these
decision models were not taken into account directly by the management.
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CART OC1 Logit Rulex
logitClassifier performance

Percentage Correctly Classified (PCC)

PCC 0.65 (±0.050) 0.63 (±0.050) 0.75 (±0.044) 0.70 (±0.050)

Notch difference

1 notch 0.29 (±0.047) 0.28 (±0.042) 0.23 (±0.044) 0.26 (±0.050)

2 notches 0.06 (±0.020) 0.08 (±0.033) 0.02 (±0.015) 0.04 (±0.025)

3 notches 0.003 (±0.008) 0.018 (±0.025) 0 (±0) 0 (±0)

Multi class AUC measure

M index 0.806 (±0.033) 0.753 (±0.049) 0.908 (±0.023) 0.820 (±0.022)

Classifier comprehensibility

Number leaves 11 (±1.34) 5.7 (±4.43) N/A 8.25 (±1.07)

MLP Rulex
MLP

SVM Rulex
SVMClassifier performance

Percentage Correctly Classified (PCC)

PCC 0.71 (±0.044) 0.67 (±0.043) 0.73 (±0.039) 0.68 (±0.058)

Notch difference

1 notch 0.26 (±0.046) 0.27 (±0.043) 0.23 (±0.034) 0.28 (±0.062)

2 notches 0.03 (±0.023) 0.06 (±0.024) 0.03 (±0.022) 0.04 (±0.022)

3 notches 0 (±0) 0.005 (±0.01) 0 (±0) 0.001 (±0.003)

Multi class AUC measure

M index 0.889 (±0.023) 0.784 (±0.039) 0.854 (±0.023) 0.812 (±0.039)

Classifier comprehensibility

Number leaves N/A 8.25 (±1.71) N/A 8.35 (±1.18)

Table 2.8: Comparative results on the IESEG data set with the best result
indicated in bold face script and techniques not significantly outperformed at the
1% confidence level indicated in italic script; the other techniques are indicated
in normal script
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It was observed that the decision tree obtained without prior rule extration
(i.e. CART) was the most complex, consisting of 9 leafs while the decision trees
obtained after rule extraction were considerably smaller. This trend toward
simpler trees by rule extraction can also be observed in Table 2.8. Finally,
the management selected the decision tree obtained after rule extraction from
support vector machines (i.e. Rulex SVM) as this decision tree was said to be
the simplest, still offering an appropriate PCC and fitting with intuition. This
is the decision tree discussed in the following paragraphs for IESEG School of
Management.

The other decision trees obtained after rule extraction provided little ad-
ditional insights in the sense that typically similar variables were found to be
important. This strengthens the insights gained by the univariate decision trees
presented in the following paragraphs.

Interpretation and discussion

The Rulex SVM decision tree was evaluated by the IESEG’s management as
being very simple, comprehensible and valuable, see Fig. 2.14. Out of the
41 available attributes, only three are retained in the selected decision tree
while still maintaining a satisfactory overall performance. Furthermore, the
management believed the performance to be of subordinate importance to the
knowledge gained concerning which attributes are generally most important.
Managers were looking in the first place for what attributes need to be pri-
oritized. Hence, the tree was considered interesting in terms of the attributes
selected as well as those left out of the decision tree. Still, the tree at hand was
based on data gathered from only one group of stakeholders (the students) and
in order to take tactical and strategic decisions, information from other sources,
representing other viewpoints, would also be required.

The tree reflects the IESEG student population’s attitude towards the per-
ceived education quality. The tree shows that priority should be given to per-
ceived ease of learning (PEL) over other variables. With a low score on PEL, a
very good perceived training performance is still not likely to lead to a very good
class satisfaction. Concerning the importance of ‘perceived ease of learning’ in
the IESEG tree, several professors said: ‘We are becoming more and more aware
of the fact that students ask for a smoother learning process. To acquire knowl-
edge, they need guidelines to orient themselves in a world of over-information.
We are no longer (only) subject experts for them; they find all kinds of infor-
mation online; we have to be learning-facilitators’. We note that this finding
should not be generalized to just any educational institution. More specifically,
for countries where Internet penetration is low, students may particularly see the
professor as a source of knowledge. This may for example be the case in India,
where the Internet penetration rate is only 8.4% (whereas it is 69.5% in France
and 49.2% in Italy). Also, the importance of the aspect of ‘perceived trainer
performance’ (PTP) was acknowledged by academic staff, stating ‘I often read
on my evaluation form that they like my class because it is dynamic, although
they don’t necessarily like the topic of my class’. IESEG’s management agreed
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Classifier performance

Percentage Correctly Classified (PCC)
PCC 0.7296

Notch difference
1 notch 0.2347

2 notches 0.0357

3 notches 0

Multi class AUC measure
M index 0.8514

Classifier comprehensibility

Number leaves 5

Figure 2.14: Univariate decision tree obtained by rule extraction from the SVM
model

that ‘our students have many contact hours and then it is understandable they
need to be animated a bit more’. While it may seem obvious that this variable
is included in the tree of an educational institution, it is not so obvious in light
of the fact that several other variables were not included in the tree (see be-
low). The tree thus shows that this PTP deserves priority over other variables.
However, it is equally important to notice that PTP only deserves this priority
in case the PEL is considered high (i.e., well above the average of 3.95). In
many cases, the PEL will get a lower score than 4.09 (the threshold), in which
case ‘perceived training efficiency’ (PTE) is more important. The inclusion of
the perceived training efficiency also was understandable to the management:
‘We sometimes get complaints from students that they have to buy expensive
books, which may be very good references in general, but which are hardly used
in class’. This issue might be especially applicable to IESEG, as this school of-
fers many short classes (of 18 contact hours) in which professors try to provide
students with a decent, comprehensive manual that usually cannot be treated
entirely within the time frame of the class. Consequently, professors were ques-
tioned about their manual use and motivated to reconsider the manual, in light
of the importance of this variable for the student’s satisfaction with their class.

The management’s conclusion was that for classes with complex subjects
(which are likely to lead to a lower PEL), it is very important for the professor to
ensure a good PTE (e.g. by improving teaching materials) while for less complex
subjects a dynamic, empathic behavior of a professor and a good atmosphere
are more important.
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While management agrees on the tree’s structure, they admit it was upfront
hard to put everything in perspective. In order to prioritize PEL, management
now for example follows up on budgeted workloads, which should be in line with
the number of ECTS credits while the workload was in the past primarily left to
the discretion of individual professors. Moreover, given the importance of PTE,
management now tries to give newly hired professors a lower teaching load so
they have more time to develop/choose appropriate manuals and supporting
material. Finally, in the hiring process more attention is paid to the teaching
style of teachers. While the school used to concentrate on the content that
the professor was mastering (related to his/her research), the school introduced
additional requirements with respect to teaching style to the extent the school
‘would rather not hire a new, fixed professor this year than hiring a professor
which is little dynamic’.

Several attributes were not retained in the model. Some of those particu-
larly drew management’s attention. In the past the management of the school
heavily encouraged professors to work at the office rather than at home. The
main reason for doing this was to guarantee a high level of service to students
given that tuition fees are relatively high at this school. Moreover, the distance
between professors and students at IESEG is significantly smaller than at many
other French institutions, thanks to the international atmosphere at the school
and the ‘open door policy’ as portrayed by the dean. A common belief was
therefore, that students would find professor availability important. However,
the attribute reflecting this was not retained in the tree (and actually in none
of the trees that were derived in earlier versions). Management saw an oppor-
tunity to act upon a comment that was often ventilated by professors: in order
to enhance their research activities, more flexibility was given to academic staff
by formally authorizing them to work at home one day per week. Another ele-
ment that was considered interesting is the fact that nationality plays no role.
At IESEG, more than 75% of professors are non-French because the majority
of courses are delivered in English. This aspect seems irrelevant for students
and there is thus no need for (positive or negative) discrimination in terms of
nationality from a teaching viewpoint. Overall, the assessment of the decision
tree led to a win-win situation at the school. First, students can get better ser-
vice because professors know what aspects really matter and deserve additional
attention. Secondly, professors get a better ‘life quality’ and probably better
research output thanks to the introduced flexibility.

The board noticed that the fact that some attributes were not retained
does not mean they are not important. The viewpoint of other stakeholders is
important too. For example, if research output is important for the institution,
aspects such as having a PhD (which was not retained in the tree) may be
important from that point of view.

Threats to validity

Upon performing empirical analyses, it is important to identify the potential
threats to both internal and external validity of the obtained results.

73



Internal validity in this context refers to the extent to which insights gained
from the student population are valid and correct. Since the data collected in
this study stems from student reactions forms, one potential threat to the inter-
nal validity is the unknown effect of sampling bias which may be present in our
data set. However, great care was put into the collection of these forms in both
educational institutions considered in this study, cfr Section 2.4.3. As such,
a large number of reactions forms were collected at both institutions, leading
to a high response rate and hence a minimal threat of sampling bias. A sec-
ond possible threat to the internal validity lies in the way the questionnaires
were conceived; the questionnaires have been designed with the specific educa-
tional literature in mind. It has been illustrated that data collected using such
questionnaires are reliable and valid [14,109,171]. Moreover, all questions have
invariantly been formulated in a positive manner and scored on a similar scale
(i.e. from 1 to 5). A third threat to internal validity is the use of aggregated
constructs, see Section 2.4.4. For each of these constructs, the Cronbach’s alpha
was calculated and found to be appropriate and thus these constructs were used
during the analyses.

External validity refers to the extent to which the results of this study can be
generalized to other student populations and/or other research settings. Given
the differences existing between educational institutions, we do not consider
our trees to have external validity. This is illustrated by the fact that the de-
rived trees differed to those of other educational institutions [73]. It is therefore
believed that the managerial insights outlined earlier may not be generalized
toward other educational institutions as the student population might be char-
acterized by other priorities. Especially the fact that only European educational
institutions have been investigated is noteworthy in this respect, and the degree
to which the results generalize to other (European) educational institutions is
left as a topic for future research.

2.4.7 Case study conclusions

In this study, we investigated the construction of comprehensible data mining
models to support strategic decisions taken by the management of educational
institutions and showed the valued results for two educational institutions. The
selection of techniques encompassed two different decision tree learners, cumu-
lative logistic regression as well as two state of the art nonlinear data mining
techniques. While it was found that cumulative logistic regression performed
best, the management of the educational institutions cooperating in this study
preferred a symbolic representation format such as univariate decision trees due
to their excellent comprehensibility. The selected decision tree allowed to iden-
tify the main drivers of overall class satisfaction, enabling the management to
provide a set of clear guidelines towards academic staff. It is noted that the
organizations differ significantly in terms of mission and governance and there-
fore, rather than taking the trees mentioned in this study as a given, educational
institutions are advised to use our approach to derive a tree fitting to their own
student society, faculty and culture.
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2.5 Chapter summary

This chapter presented a general ML taxonomy, supplemented with a discussion
on the related aspect of model validation. Next, a case study relating to student
satisfaction was detailed, which served as an example of the concepts treated
in the first part of the chapter. This study also encompassed the different
steps of the Knowledge Discovery in Databases (KDD) process which implicitly
underpins the next chapters of this dissertation.
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I have had my results for a long
time: but I do not yet know how I
am to arrive at them.

Carl Friedrich Gauss, 1777 – 1855 3
Quantifying software development effort

In the third chapter of this dissertation, we deal with the topic of software ef-
fort estimation. Definitely not a trivial one, the question of how to come up
with accurate estimates has troubled many researcher. During the last 3 decades
and more, a library of articles has been written to address this question, with-
out offering a univocal recommendation of which technique is most suited. This
chapter addresses this issue by reporting on the results of a large scale bench-
marking study, comparing a multitude of different techniques. Furthermore, the
aspect of feature subset selection by using a generic backward input selection
wrapper is investigated. Subjecting the results to rigorous statistical testing, our
findings suggest ordinary least squares regression in combination with a loga-
rithmic transformation to be most appropriate. Another key insight is that by
selecting a subset of highly predictive attributes such as project size, development,
and environment related attributes, typically a significant increase in estimation
accuracy can be obtained.

This chapter is based on the following paper

- K. Dejaeger, W. Verbeke, D. Martens and B. Baesens, “Data mining techniques
for software effort estimation: a comparative study,” IEEE Transactions on
Software Engineering, 38 (2): 375–397, 2012.

3.1 Introduction

Resource planning is considered a key issue in a production environment. In the
context of a software developing company, the different resources are, amongst
others, computing power and personnel. In recent years, computing power has
become a subordinate resource for software developing companies as it doubles
approximately every 18 months, hereby costing only a fraction compared to the
late 60’s. Personnel costs are however still an important expense in the budget
of software developing companies. In light of this observation, proper planning
of personnel effort is a key aspect for these companies. Due to the intangible
nature of the product ‘software’, software developing companies are often faced
with problems estimating the effort needed to complete a software project [305].
As was already indicated in Section 1.3.2, there has been strong academic in-
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terest in this topic, assisting the software developing companies to tackle the
difficulties experienced when estimating the software development effort. In this
field of research, the required effort to develop a new project is estimated based
on historical data from previous projects. This information can be used by the
management to improve the planning of personnel, to make more accurate ten-
dering bids, and to evaluate risk factors [165]. Recently, a number of studies
evaluating different techniques have been published, without however offering
a univocal conclusion. Menzies et al. disseminated in an editorial the origin
of this conclusion instability, listing amongst others differences in preprocessing
and data sources, and the preference of researchers towards specific techniques
as sources of conclusion variance and conclusion bias respectively [232]. In this
chapter, an overview of the existing literature is presented, complementing the
overview of Chapter 1. Furthermore, thirteen techniques, able to induce a het-
erogenous set of models, are investigated. This selection includes tree/rule based
models (M5 and CART), linear models (ordinary least squares regression with
and without various transformations, ridge regression, and robust regression),
non-linear models (MARS, least squares support vector machines, multi layered
perceptron neural networks, radial basis function networks), and a lazy learn-
ing based approach which does not explicitly construct a prediction model, but
instead tries to find the most similar past project. Each technique is applied to
nine data sets within the domain of software effort estimation. From a compre-
hensibility point of view, a more concise model (i.e. a model with less inputs) is
preferred. Therefore, the impact of a generic backward input selection approach
is assessed.

The remainder of this chapter is structured as follows.
Section 3.2 presents an overview of the literature concerning software effort
estimation.
Section 3.3 discusses the applied techniques.
Section 3.4 reflects upon the data sets, evaluation criteria and the statistical
validation.
Section 3.5 elaborate on our findings regarding techniques and generic backward
input selection procedure.
Section 3.6 finally wraps up the chapter by providing a general conclusion.

3.2 Related research

In brief, software effort estimation draws upon the information of past projects
(e.g. size, programming language, and experience of development team together
with the associated development effort), to learn a mathematical model which
relates the characteristics of a new software project to an estimate of the devel-
opment time. In Section 1.3.2, we already discussed the three main approaches
to software effort estimation (i.e. expert driven estimation, formal models and
data mining). As this chapter revolves around the question which data mining
technique is most suited to software effort prediction, the focus in this research
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EMi Description Impact

acap Analysts capability Positive impact

pcap Programmers capability
aexp Application experience

Increase results
in a decrease of
effort

modp Modern programming practices
tool Use of software tools
vexp Virtual machine experience
lexp Language experience

sced Schedule constraint Convex relation

stor Main memory constraint Negative impact
data Data base size
time Time constraint for cpu

Increase results
in an increase of
effort

turn Turnaround time
virt Machine volatility
cplx Process complexity
rely Required software reliability

Table 3.1: Overview of the Cocomo I multipliers

overview will be on the latter approach. It is however worth pointing out that
many practitioners rely on expert judgement or formal models. Both these ap-
proaches have there own strengths and drawbacks; e.g. Jørgensen noticed that
‘There are situations where expert estimates are more likely to be more accu-
rate... Similarly, there are situations where the use of models may reduce large
situational or human biases’.

Following the comparison of data mining techniques, the applicability of
the (formal) Cocomo model is further discussed in Section 3.5.2. In Eq. 1.2,
the Cocomo II post architecture model was presented; however, as only data
pertaining to the Cocomo I model was obtained, this older variant is assumed
in this chapter. The Cocomo I model takes the following form:

Effort = a× Sizeb
15∏
i=1

EMi

�� ��3.1

where a and b are two factors that can be set depending on the details of
the developing company and EMi is a set of effort multipliers, see Table 3.1.
As data sets typically contain insufficient projects to calibrate all parameters,
only a and b are adapted to reflect the development environment. Data for
this model is collected making use of specific questionnaires which are filled
in by the project manager and as such requires a considerable effort from the
business. The Cocomo II update concerns new software development trends
such as outsourcing and multiplatform development [39].

More recently, formal models are being superseded by a number of data
intensive techniques originating from the data mining literature [163]. These
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include various regression techniques which result in a linear model [98, 275],
non-linear approaches like neural networks [98], tree/rule based models such
as CART [45, 46], and lazy learning strategies (also referred to as ‘case based
reasoning’ or ‘analogy’) [180, 181, 204]. Data mining techniques typically result
in objective and analyzable formulae and are not limited to a specific set of
attributes as is the case with formal models such as Cocomo I. Several studies
assessed the applicability of data mining techniques to software effort estimation.
However, most of these studies evaluate only a limited number of modeling
techniques on a particular, sometimes proprietary, data set which naturally
constrains the generalizability of the observed results. Some of these studies
also lack a proper statistical testing of the obtained results or evaluate models
on the same data as used to build the models [177].

A non-exhaustive overview of the literature concerning the use of various
machine learning approaches for software effort estimation is presented in Table
3.2. This table summarizes the applied modeling techniques, the data sets that
are used, and the empirical setup for a number of studies and shows that a
large number of modeling techniques have been applied in search for the most
suitable technique for software effort estimation, both in terms of accuracy and
comprehensibility.

For example, Finnie et al. [98] compared Artificial Neural Networks (ANN)
and Case Based Reasoning (CBR) to Ordinary Least Squares regression (OLS
regression). It was found that both artificial intelligence models (ANN and
CBR) outperformed OLS regression and thus can be adequately used for soft-
ware effort estimation. However, these results were not statistically tested.

Briand et al. [45], while performing a comparison between OLS regression,
stepwise ANOVA, CART, and CBR, found that case based learning achieved the
worst results while CART performed best; however, the difference was not found
to be statistically significant. In a follow up study using the same techniques on
a different data set, different results were obtained, i.e. stepwise ANOVA and
OLS regression performed best [46].

Shepperd et al. [283] reported that CBR outperforms regression, yet in a
study by Myrtveit and Stensrud [244], these results were not confirmed. How-
ever, Shepperd et al. used a different regression approach (without a log trans-
formation) to the latter study and opted not to split the data set in a training
and test set.

It should be noted that the results of studies are often difficult to compare
due to different empirical setup and data preprocessing, possibly leading to
contradictory results [114]. Hence the issue of which modeling technique to
use for software effort estimation remains an open research question. Another
issue in software engineering is the fact that estimation techniques are typically
applied to small data sets and/or data sets which are not publicly available,
rendering these studies irreproducible [208]. Additionally, inferences are often
made on only one or two data sets and as is noted by Kitchenham [177] ‘One
of the main problems with evaluating techniques using one or two data sets is
that no-one can be sure that the specific data sets were not selected because
they are the ones that favor the new technique’.
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Remark that, although a large variety of techniques are available, see e.g.
Section 2.2, expert driven estimation methods are still frequently applied in a
business setting. Evidence from other domains suggests that both data mining
and formal models could provide more accurate estimates than expert driven
estimation methods. Often cited strong points of an analytical approach are
consistency (provided with the same input, a model will always reach the same
conclusion) and the fact that such models posses the ability to correctly assess
the impact of different inputs [68]. This conjecture was however not confirmed
by studies in the domain of software effort prediction [160]. Jørgensen stated
that ‘The use of models, either alone or in combination with expert judgement
may be particulary useful when i) there are situational biases that are believed
to lead to a strong bias towards overoptimism; ii) the amount of contextual
information possessed by the experts is low; and iii) the models are calibrated
to the organization using them.’ [161]. Other research confirmed that whether
expert driven methods perform significantly better or worse than an analytical
oriented approach remains a point of debate [137,164,242].
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3.3 Techniques

As this study aims to identify the best data mining approach to estimate soft-
ware effort, a broad selection of learners is under consideration, see Fig. 3.11.
These techniques were selected on the premise of achieved results in this or other
(regression) settings. Also the computational cost was factored in during tech-
nique selection, eliminating learners characterized by high computational loads,
in order to keep the scale of the benchmarking experiment more manageable.

Chapter 2 already introduced most learners, and where appropriate, the fol-
lowing paragraphs provide additional details. A selection of statistical methods
and data mining techniques (MARS, CART and MLP; cfr infra) is illustrated on
the Desharnais data set in Fig. 3.2 (a) to (f) by plotting project size (PointsNon-
Adjust) against effort in man hours.

3.3.1 Statistical methods

OLS and transformations

Ordinary Linear regression (OLS) forms the cornerstone of many alternative
analysis techniques, some of with are discussed below. Detailed in Section 2.2.6,
the dependent and independent attributes can additionally be subjected to var-
ious transformations to improve the fit of the linear function learned by this
technique. More specifically, both a log transformation and a Boc Cox trans-
formation are considered in this study.

Log + OLS
Typically, both dependent and independent attributes in the field of software
effort prediction can be heavily skewed; e.g. skewness(e)Desharnais = 1.97 and
skewness(e)ESA = 4.89. Skewness, γs, is defined as:

γs =
µ3

σ3

�� ��3.2

where µ3 is the third moment of the mean, and σ the standard deviation. A
normal distribution has a skewness of zero while a positive (negative) skew-
ness indicates a larger number of smaller (bigger) projects. By applying a log
transformation to the data, the residuals of the regression model become more
homoscedastic, and follow more closely a normal distribution [133]. This trans-
formation is also used in previous studies [45, 46]. Both OLS and Log + OLS
are illustrated in Fig. 3.2 (a).

BC + OLS
The Box Cox (BC) transformation is a power transformation which corrects for

1The techniques are implemented in Matlab, www.mathworks.com, and Weka,
www.cs.waikato.ac.nz/ml/weka. Additionally, open source toolboxes were used in case of
least squares support vector machines (LS-SVMlab, www.esat.kuleuven.be/sista/lssvmlab)
and MARS (ARESLab, www.cs.rtu.lv/jekabsons/regression.html).
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Robust regression
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. . .

. . .
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Figure 3.1: Overview applied techniques
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discontinuities, e.g. when the transformation parameter, γ, is zero [40]. The
BC transformation is defined as:

e∗i =

{
(eγi −1)

γ γ ̸= 0

log ei γ = 0

�� ��3.3

The transformation parameter is obtained by a maximum likelihood optimiza-
tion. The BC transformation is an alternative to the log transformation serving
similar goals. A BC transformation will resolve also problems related to non-
normality and heterogeneity of the error terms [272].

To the best of our knowledge, the BC transformation has not been previously
applied in the context of software effort estimation.

Robust regression

Robust regression (RoR) is an alternative to OLS regression with the advantage
of being less vulnerable to the existence of outliers in the data [141]. RoR is an
application of Iteratively Reweighted Least Squares (IRLS) regression in which

the weights ω
(t)
i are iteratively set by taking the error terms of the previous

iteration, ϵ
(t−1)
i , into account. In each iteration, RoR will minimize the following

objective function:

min
N∑
i=1

ω2
i ϵ

2
i

�� ��3.4

From this equation, it can be easily seen that OLS regression can be in fact
considered as a special case of RoR [237].

Multiple possible weighting functions exist, the most commonly applied be-
ing Huber’s weighting function and Tukey’s bisquare weighting function. In this
study, the Tukey’s bisquare weighting function is used:

ωbisquare =

{
(1− ζ2)2 if |ζ| < 1
0 otherwise

�� ��3.5

ζ is the normalized error term and is computed as a function of σ̂, the estimated
standard deviation of the error terms, and a tuning constant, τ , which penalizes
for the distance to the regression function. The first iteration consists of an
OLS regression since the weights depend on the previous iteration.

RoR is a technique that has been previously applied in the field of software
effort estimation [150].

Ridge regression

Ridge regression (RiR) is an alternative regression technique that tries to address
a potential problem with OLS in case of highly correlated attributes. OLS
regression is known to be BLUE (Best Linear Unbiased Estimator) if a number
of conditions are fulfilled, e.g. the fact that X′X should be non singular. In
reality however, different variables are often highly correlated, resulting in a
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near singular X′X matrix. This will result in unstable estimates in which a
small variation in e, the dependent variable, can have a large impact on β̂.

RiR addresses this potential problem by introducing a so-called ridge param-
eter, δ [140]. The introduction of the ridge parameter will yield the following
estimator of β:

β̂δ = (X′X + δIn)−1(X′e)
�� ��3.6

where In represents the identity matrix of rank n.
To the best of our knowledge, this technique has not been applied before

within the domain of software effort estimation.

Least Median of Squares regression

Least Median of Squares regression (LMS) is an alternative to robust regression
with a breakdown point κ∗ = 50% [269]. The breakdown point κ∗ is the smallest
percentage of incorrect data that can cause an estimator to take on aberrant
values [123]. This breakdown point is 0% for all the other regression techniques
considered in this study, indicating that extreme outliers could have a detrimen-
tal influence for these techniques. The LMS will optimize the following objective
function:

minmedian(ϵ2i )
�� ��3.7

where ϵi is the error associated with the ith observation. Although LMS regres-
sion is known to be inefficient in some situations [123], this technique has been
applied in different domains. However, to the best of our knowledge, the LMS
regression has not been applied to the estimation of software effort.

Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is a novel technique intro-
duced by Friedman [104]. MARS is a nonlinear and non-parametric regression
technique exhibiting some interesting properties like ease of interpretability, ca-
pability of modeling complex nonlinear relationships, and fast model construc-
tion. It also excels at capturing interactions between variables and therefore is a
promising technique to be applied in the domain of effort prediction. MARS has
previously been successfully applied in other domains including credit scoring
[197] and biology [89].

MARS fits the data to the following model:

ei = b0 +
K∑

k=1

bk

L∏
l=1

hl(xi(j))
�� ��3.8

where b0 and bk are the intercept and the slope parameter respectively. hl(xi(j))
are called hinge functions and are of the form max(0, xi(j) − b) in which b is
called a knot. It is possible to model interaction effects by taking the product
of multiple hinge functions. Hence, this model allows for a piecewise linear
function by adding multiple hinge functions.
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The model is constructed in two stages. In a first stage, called the for-
ward pass, MARS starts from an empty model and constructs a large model by
adding hinge functions to overfit the data set. In a second stage, the algorithm
removes the hinge functions associated with the smallest increase in terms of
the Generalized Cross Validation (GCV) criterion.

GCVK =

∑N
i=1(ei − êiK)2(
1− C(K)

N

)2 �� ��3.9

Here, C(K) represents a model complexity penalty which is dependent on the
number of hinge functions in the model while the numerator measures the lack of
fit of a model with K hinge functions, êiK . Both LMS and MARS are illustrated
on the Desharnais data set in Fig. 3.2 (b).

3.3.2 ML based algorithms

CART

CART (Classification And Regression Trees) is an algorithm that takes the well
known idea of decision trees for classification [264], and adopts it to continuous
targets. The splitting criterion used in this study is the least squared deviation:

min
∑
i∈L

(ei − eL)
2

+
∑
i∈R

(ei − eR)
2

�� ��3.10

The data set is split in a left node (L) and a right node (R) in a way that
the sum of the squared differences between the observed and the average value
is minimal. A minimum of ten observations at each terminal node is set to
halt further tree construction. In retrospect, the fully grown tree is pruned to
avoid overfitting on the training set. Fig. 3.2 (c) and (d) respectively present
the estimation function and the accompanying binary regression tree for the
Desharnais data set.

The good comprehensibility of regression trees can be considered a strong
point of this technique. To determine the effort needed for a new project, it
is sufficient to select the appropriate branches based on the characteristics of
the new project. It is possible to construct an equivalent rule set based on the
obtained regression tree.

This technique has previously been applied within a software effort predic-
tion context where it consistently was found to be one of the better performing
techniques [45,46,150,176,227].

M5

Introduced by Quinlan [263], the model tree technique (M5) can be consid-
ered as an extension to CART. A model tree will fit a linear regression to the
observations at each leaf instead of assigning a single value like CART.
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MLP RBFN

Training algorithm Levenberg Marquart
Generalized Regression
Neural Networks [294]

Topology Hidden layer :
log sigmoid

Output layer :
linear

Previous
applications

[49,98,198] [138,147]

Example Regression function:
Fig. 3.2 (e)

Trained network :
Fig. 3.2 (f)

Table 3.3: Details perceptron based models

The model tree algorithm used in this study is the M5′ algorithm which is
a variant of the original M5 algorithm [327]. A binary decision tree is induced
by recursively applying the following splitting criterion, similar to CART.

min

(
eL

eL + eR
× stdev(eL) +

eR
eL + eR

× stdev(eR)

) �� ��3.11

Instead of taking the absolute deviations into account as is the case with CART,
the M5′ algorithm applies a splitting criterion based on standard deviation.
After growing and pruning the decision tree, a linear regression is fitted to the
observations at each leaf. This regression only considers attributes selected by
the different attribute conditions on the nodes, thus resulting in a tree based
piecewise linear model. Finally, a smoothing process is applied to compensate
for possible discontinuities that may occur between adjacent linear models at
the different leaves.

The use of a model tree algorithm should allow for a more concise represen-
tation and higher accuracy compared to CART [263].

3.3.3 Perceptron based models

This class of learners was already discussed in Section 2.2.2 of this dissertation.
Both Multi Layered Perceptrons (MLPs) and Radial Basis Function networks
(RBFN) are considered and Table 3.3 provides additional details on these learn-
ers in the context of this chapter.

3.3.4 Kernel methods: LS-SVM

Least Squares SVM (LS-SVM) for regression is a variant of SVM, cfr Section
2.2.5, in which the goal is to find a linear function f(xi) in a higher dimensional
feature space minimizing the squared error r2i [299]. Hereto, the following SVM
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formulation is considered.

min ||w||
2

2
+ C

2

∑N
i=1 r

2
i

s.t. wϕ(xi) + b + ri = εi, i = 1 . . . N

�� ��3.12

The optimum of this convex function can be found by considering its La-
grangian and subsequently reformulating it into its dual form. This will give
rise to a dot product in the higher dimensional feature space and a kernel func-
tion K(xi,x) = ϕ(xi) · ϕ(x) will be considered to facilitate computation of this
product. A Radial Basis Function (RBF) kernel was used in this study as it was
previously found to be a good choice in case of LS-SVMs [319], see Eq. 2.11.

SVMs are a popular technique which has been applied in various domains.
Since this is a rather recent machine learning technique, its suitability in the
domain of software effort estimation has only been studied to a limited extent
[192].

3.3.5 Other approaches: Case based reasoning

Case Based Reasoning (CBR) is a technique that works similar to the way in
which an expert typically estimates software effort; it searches for the most sim-
ilar cases and the effort is derived based on these retrieved cases. This technique
is commonly used in software effort estimation, e.g. [49, 98, 204,227,283]. Typ-
ically, the Euclidian distance with rescaled attributes is used in retrieving the
most similar case.

Distance(xi,xj) =

√√√√ n∑
k=1

(xi(k) − xj(k))2
�� ��3.13

The rescaling is done by subtracting the minimum and dividing by the differ-
ence between maximum and minimum of an attribute. Only relevant attributes
should be taken into account when calculating the Euclidian distance; in line
with [45, 98], only attributes characterized by significant differences in effort
are selected as found by applying a t-test in case of binary attributes and an
ANOVA test otherwise. In both cases, only attributes with significant differ-
ences in effort at α = 95% are retained during effort estimation. A final issue
is the number of analogies to consider. In some studies, it is argued that no
significant differences are found when retrieving more than one case, while other
studies report a decrease in accuracy if more cases are retrieved [62]. Therefore,
multiple alternatives are considered (k=1, k=2, k=3, and k=5). The final effort
is determined by taking the average effort of the retrieved cases.
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Figure 3.2: Comparison of machine learning techniques on the Desharnais data
set. (a) presents OLS regression with and without log transformation, (b) rep-
resents MARS and LMS, (c) and (e) show respectively the CART and MLP
regression line while (d) and (f) show the accompanying CART tree and neural
network
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3.4 Empirical setup

3.4.1 Data sets

Nine data sets from companies of different industrial sectors are used to assess
the techniques discussed in Section 3.3. While other software effort estimation
data sets exist in the public domain (e.g. a study of Mair et al. identified 31
such data sets [216]), the majority of these data sets are rather small. The
overview of Mair et al. identified only three published data sets pertaining to
over 50 projects; the Coc81, CSC and Desharnais data sets. The CSC data
set however focusses on differences between estimation approaches instead of
project characteristics and is therefore not included in this study. Investigating
recent literature, three other data sets in the public domain were identified;
i.e. the Cocnasa, Maxwell and USP05 data sets. Furthermore, researchers
having access to data sets pertaining to over 150 projects were contacted as
well as several companies involved in effort estimation. As such, access to four
additional software effort estimation data sets was obtained (the Experience,
ESA, ISBSG and Euroclear data sets).

The data sets typically contain a unique set of attributes that can be cate-
gorized as follows:

• Size attributes are attributes that contain information concerning the size
of the software project. This information can be provided as Lines Of Code
(LOC), Function Points, or some other measure. Size related variables are
often considered to be important attributes to estimate effort [35].

• Environment information contains background information regarding the
development team, the company, the project itself (e.g. the number of
developers involved and their experience), and the sector of the developing
company.

• Project data consist of attributes that relate to the specific purpose of the
project and the project type. Also attributes concerning specific project
requirements are placed in this category.

• Development related variables contain information about managerial as-
pects and/or technical aspects of the developed software projects, such
as the programming language or type of database system that was used
during development.

Table 3.4 provides an overview of the data sets, including number of at-
tributes, observations, and previous use. The skewness and kurtosis as well as
the minimum, mean and maximum of effort and size in Klocs or FP is given. On
the right hand side, the partitioning of the different attributes across the four
attribute types is shown for each data set. From this overview, the inherent dif-
ficulties to construct software effort estimation models become apparent. Data
sets typically are strongly positively skewed indicating many ‘small’ projects
and a limited number of ‘large’ outliers. Also, data sets within this domain are
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Data set Single/multi
company

Application
domains

Size
measure

Range years

ESA M Space/military Kloc 1983-1996

Experience M Manufacturing,
banking,
retail,. . .

FP2 1987-2010

ISBSG M Accounting,
banking,
trade,. . .

FP 1989-2009

USP05 S Student
projects

FP 2005

Coc81 S Engineering,
science,
finance,. . .

Kloc 1970-1981

Cocnasa M Space/military Kloc 1981-1999

Euroclear S Finance - 2006-2008

Desharnais S Unknown FP 1981-1988

Maxwell S Finance FP 1985-1993

Table 3.5: Characteristics of software effort estimation data sets

typically small as compared to other domains. Most data mining techniques
benefit from having more observations to learn from. Table 3.5 further details
a number of basic characteristics of each data set including whether the data
was collected from a single or multiple companies, the application domain of
the software, the size measure used, and the years during which the information
was collected.

Development effort

Ideally, development effort of projects is recorded using e.g. daily time sheets
such that this value only reflects time spent on the actual development, and not
relate to e.g. educational activities. As the data used in this study was collected
in various ways, the correctness of the target attribute is hard to assess. E.g.
the Maxwell and Desharnais data sets relate to projects done by subcontractors
which used an unknown recording approach, while the Cocomo data sets (Coc-
nasa and Coc81) both include development and management hours. The ISBSG
makes use of standardized questionaires which differ according to the functional
sizing method employed at the beginning of the project. The questionnaires al-
low to specify different effort counting methods, with the ‘staff hours (recorded)’
option the most prevalent. This corresponds to the usage of daily records of
project related tasks of all employees working on the project. As the measuring
approach is unclear in most cases, this was not taken into consideration in the
remainder of this study, in line with other researchers [45,98,177,283].

2A five point scale is used to measure complexity weights instead of a three point scale.
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Table 3.4: Overview software effort prediction data sets

ESA
Skewness: 4.89
Kurtosis: 30.13
Minimum effort: 3 Minimum Kloc: 1.5
Mean effort: 264 Mean Kloc: 56
Max effort: 4,361 Max Kloc: 413

Number of observations: 131
Number of attributes: 14
Previously used in other studies, e.g. [16,46,224]
Reference: The ESA initiative for Software Pro-
ductivity Benchmarking and Effort Estimation
www.esa.int/esapub/bulletin/bullet87/greves87.htm

Experience
Skewness: 4.45
Kurtosis: 32.30
Minimum effort: 55 Minimum FP: 7.14
Mean effort: 4,248 Mean FP: 728
Max effort: 67,576 Max FP: 14,092

Number of observations: 627
Number of attributes: 29
Previously used in other studies, e.g.
[16,45,198,225,297]
Reference: www.fisma.fi

2/29

8/29

8/29

11/29

ISBSG
Skewness: 4.40
Kurtosis: 30.50
Minimum effort: 16 Minimum FP: 4
Mean effort: 4,226 Mean FP: 374
Max effort: 60,826 Max FP: 7,400

Number of observations: 1,160
Number of attributes: 14
Previously used in other studies, e.g.
[149,204,275]
Reference: www.isbsg.org

1/14

3/14

2/14

8/14
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USP05
Skewness: 2.10
Kurtosis: 7.14
Minimum effort: 0.5 Minimum FP: 0
Mean effort: 7.25 Mean FP: 25
Max effort: 50 Max FP: 321

Number of observations: 193
Number of attributes: 14
Previously used in other studies, e.g. [203,204]
Reference: [203,204]
www.promisedata.org/?p=48

2/14

3/14

2/14

7/14

Coc81
Skewness: 4.37
Kurtosis: 23.08
Minimum effort: 5.9 Minimum Kloc: 1.98
Mean effort: 683 Mean Kloc: 77
Max effort: 11,400 Max Kloc: 1,150

Number of observations: 63
Number of attributes: 16
Previously used in other studies, e.g.
[57, 146,147,229,275]
Reference: [35]
www.promisedata.org/?p=6

1/16

5/16

2/16

8/16

Cocnasa
Skewness: 4.19
Kurtosis: 24.81
Minimum effort: 8.4 Minimum Kloc: 0.9
Mean effort: 624 Mean Kloc: 94
Max effort: 8,211 Max Kloc: 980

Number of observations: 93
Number of attributes: 16
Previously used in other studies, e.g. [57, 229]
Reference: www.promisedata.org/?p=35

1/16

5/16

2/16

8/16
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Euroclear
Skewness: 2.25
Kurtosis: 8.49
Minimum effort: 24
Mean effort: 1,402
Max effort: 7,758

Number of observations: 90
Number of attributes: 11
Data set has not been used in previous studies
Reference: www.euroclear.com

1/11

3/11

7/11

Desharnais
Skewness: 1.97
Kurtosis: 7.36
Minimum effort: 546 Minimum FP: 62
Mean effort: 5,046 Mean FP: 287
Max effort: 23,940 Max FP: 1,116

Number of observations: 81
Number of attributes: 9
Previously used in other studies, e.g.
[16,49,205,283,284,312]
Reference: [78]
www.promisedata.org/?p=9

2/8

2/8

1/8

3/8

Maxwell
Skewness: 3.27
Kurtosis: 15.52
Minimum effort: 583 Minimum FP: 48
Mean effort: 8,223 Mean FP: 673
Max effort: 63,694 Max FP: 3,643

Number of observations: 62
Number of attributes: 23
Previously used in other studies, e.g. [205,275]
Reference: [223]
www.promisedata.org/?p=108

1/23

5/23

6/23

11/23
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3.4.2 Data preprocessing

A first important step in each data mining exercise is data preprocessing. In
order to correctly assess the techniques discussed in Section 3.3, the same data
preprocessing steps are applied to each of the nine data sets.

First, starting from the raw data set, the data used to learn and validate
the models is selected; only attributes that are known at the moment when
the effort is estimated are taken into account (e.g. duration or cost are not
known and therefore not included in the data set). An implicit assumption
made in most software effort estimation studies is that size related attributes
are taken for granted. However, in reality such attributes are often the result
of an estimation process on their own. This remark is also echoed e.g. by
Jørgensen, stating that ‘a program module’s size and degree of complexity ...
are typically based on expert judgement’ [161]. However, this assumption is
made (but rarely mentioned) not only in this study, but in almost all studies
in the domain of software effort estimation. Furthermore, some of the data
sets include an indication about the reliability of observations. Taking this
information into account, the observations with a higher possibility of being
incorrect are discarded. In Table 3.4, an overview of the number of retained
attributes and observations is provided.

Second, since some of the techniques are unable to cope with missing data
(e.g. OLS regression), an attribute is removed if more than 25% of the attribute
values are missing. Otherwise, for continuous attributes, median imputation is
applied in line with [318]. In case of categorical attributes, a missing value flag
is created if more than 15% of the values are missing; else, the observations
associated with the missing value are removed from the data set. Since missing
values often occur in the same observations, the number of discarded projects
turned out to be low. In appendix A, the data preprocessing is illustrated for
the ISBSG data set as this is the largest data set, both in number of attributes
and number of projects.

Finally, coarse classification with k-means clustering is applied in case of
categorical attributes with more than eight different categories (excluding the
missing value flag). Afterwards, the categorical variables are transformed into
binary variables using dummy encoding. No other preprocessing steps are per-
formed on the data.

Data mining techniques typically perform better if a larger training set is
available. On the other hand, a part of the data needs to be put aside as an in-
dependent test set in order to provide a realistic assessment of the performance.
As can be seen from Table 3.4, the smallest data set contains 62 observations,
while the largest contains up to 1,160 observations. In case of data sets contain-
ing more than 100 observations, repeated random hold-out splitting is applied.
In such situation, Kirsopp et al. [175] claimed that ‘ideally more than 20 sets
should be deployed’, a finding we agree upon, see also Fig. 3.3. When faced
with smaller data sets, leave-one-out cross validation (LOOCV) is used, see also
Section 2.3.1.

The LOOCV approach is computationally more expensive since as many

99



0 5 10 15 20 25 30
23

24

25

26

27

28

29

30

# Hold out splits included

P
re

d
2
5

95% Confidence interval

Lower Confidence Limit

X̄ - 1.96× S
√

n

Upper Confidence

Limit

X̄ + 1.96× S
√

n
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models need to be estimated as there are observations in the data set, but guar-
antees that as much as possible observations are used to learn from [186]. This
approach has previously been adopted in the field of software effort prediction,
see e.g. [16, 245, 283]. Note that there still is a discussion on whether k-fold
cross validation or LOOCV is best, however Myrtveit et al. pointed out that
LOOCV is more in line with real world situations [245].

3.4.3 Technique setup

Several of the estimation techniques discussed in Section 3.3 have adjustable
parameters, also referred to as hyperparameters, which enable a model to be
adapted to a specific problem. When appropriate, default values are used based
on previous empirical studies and evaluations reported in the literature. If
no generally accepted default parameter values exist, then these parameters
are tuned using a grid-search procedure. In other words, a set of candidate
parameter values is defined and all possible combinations are evaluated by means
of a split-sample setup. The models are induced on 2/3 of the training data and
the remainder is used as a validation set. The performance of the models for a
range of parameter values is assessed using this validation set. The parameter
values resulting in the best performance are selected and a final model is trained
on the full training set. The MdMRE performance measure guided this tuning
procedure, see Section 3.4.5.

3.4.4 Input selection

A second factor impacting the performance of software effort prediction models
is input selection. Typically, similar, or occasionally better performance can
be obtained by inducing models from a data set containing less, but highly
relevant attributes, yielding a more concise and comprehensible model [222,323].
Therefore, a generic input selection procedure is applied in which a subset of
highly predictive attributes is selected, discarding irrelevant variables.
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Hereto, a generic backward input selection approach is proposed, in which
in each step as many models are induced as there are variables left. Each of
these models include all the remaining variables except one. The performance of
the estimated models is compared, and the best performing attribute subset is
selected. This procedure is repeated until only one attribute remains in the data
set. The performance of the sequentially best models with a decreasing number
of attributes is plotted, see Fig. 3.5. In the beginning, the performance typically
remains stable or even increases while discarding attributes [57]. When the size
of the attribute set drops below a certain number of attributes, the performance
of the model drops sharply. The model at the elbow point is considered to
incorporate the optimal trade off between maximizing the performance and
minimizing the number of attributes. The performance at this elbow point is
reported in Section 3.5.

Algorithm 1 provides a formal description of the followed procedure in case of
data sets containing more than 100 observations. Otherwise, a cross validation
based alternative is adopted.

Algorithm 1: Pseudo code of backward input selection

Let Dn
tr,l and Dn

te,l be the lth (l = 1 . . . 20) random holdout split of a data

set with n attributes and N observations
for j = n to 1 do

for k = 1 to j do

Exclude attribute k from data sets Dj
tr,l and Dj

te,l

for l = 1 to 20 do

Induce model from Dj
tr,l

Calculate model performance P j
k,l on Dj

te,l

Calculate mean performance over all holdout splits:
P j
k = 1

20

∑20
l=1 P

j
k,l

Remove attribute x′
(m) from Dj where P j

m = maxk(P j
k ) resulting in

Dj−1

Plot(j,P j
m) with j = 1, . . . , n

Select elbow point with optimal trade-off between performance and
number of variables

3.4.5 Evaluation criteria

A key question to any estimation method is whether the predictions are accurate;
the difference between the actual effort, ei, and the predicted effort, êi, should
be as small as possible. While several metrics have been proposed, including
those detailed in Section 2.3.1 and Table 2.2, the literature on software effort
estimation models is largely supported by Magnitude of Relative Error (MRE)
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based metrics [64]. The MRE is calculated per instance as:

MREi =
|ei − êi|

ei

�� ��3.14

Based on the MRE criterion, a number of accuracy measures are defined. The
MRE value of individual predictions can be averaged, resulting in the Mean
MRE (MMRE):

MMRE =
100

N

N∑
i=1

|ei − êi|
ei

�� ��3.15

Although being a commonly used measure (see also Table 3.2), the MMRE can
be highly affected by outliers [258]. To address this shortcoming, the MdMRE
metric has been proposed which is the median of all MREs. This metric can be
considered more robust to outliers, and is therefore preferred over the MMRE.

MdMRE = 100×median(MRE)
�� ��3.16

A complementary accuracy measure is PredL, the fraction of observations for
which the predicted effort, êi, falls within L% of the actual effort, ei:

PredL =
100

N

N∑
i=1

{
1 if MREi ≤ L

100
0 otherwise

�� ��3.17

Typically the Pred25 measure is considered, looking at the percentage of pre-
dictions that are within 25% of the actual values.

The Pred25 can take a value between 0 and 100% while the MdMRE can take
any positive value. It is often difficult to compare results across different studies
due to differences in empirical setup and data preprocessing, but a typical Pred25

lies in the range of 10% to 60%, while the MdMRE typically attains values
between 30% and 100%.

Besides Pred25 and MdMRE, we also compared the techniques using a cor-
relation metric. As the data is not normally distributed (see also Table 3.4), a
rank correlation measure is adopted, which is a measure of the monotonic rela-
tionship between ei and êi. More specifically, the Spearman’s rank correlation
coefficient, rs, is used since this non-parametric correlation coefficient does not
assume a normal distribution of the underlying data [133]. The Spearman’s rank
correlation takes a value between -1 and +1 with +1 (-1) indicating a perfect
positive (negative) monotonic relationship between the actual values and the
predicted values, and was already introduced in Table 2.2.

3.4.6 Statistical tests

The testing procedure outlined in Section 2.3.3 is followed to statistically verify
the results of this experiment. This procedure consists of a Friedman test, see
Eq. 2.16, followed by an appropriate post-hoc test. As the goal is to identify
the best treatment (learner and the appliance of input selection), the post-hoc
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Bonferroni-Dunn test [84] is selected. Let k be the number of treatments and
P be the number of test attempts. The difference between the best treatment
and other treatments is significant if the corresponding average ranks differ by
at least the Critical Distance (CD), defined as:

CD = qα

√
k(k + 1)

6P

�� ��3.18

with the critical value qα based on the Studentized range statistic divided by√
2, and an additional Bonferroni correction by dividing the confidence level α

by the number of comparisons, (k − 1), to control for family wise testing. This
results in a lower confidence level and thus in higher power.

The previous tests are performed in order to compare the results across the
different data sets. Additionally, to compare the performance of two models
on a single data set, the non-parametric Wilcoxon Matched Pairs test [331] (in
case of the MdMRE) and the parametric t-test [133] (in case of Pred25 and
correlation) are performed. The Wilcoxon Matched Pairs test compares the
ranks for the positive and negative differences in performance of two models,
and is defined as:

min

(∑
di>0

R(di) +
1

2

∑
di=0

R(di),
∑
di<0

R(di) +
1

2

∑
di=0

R(di)

) �� ��3.19

with R(di) the rank of the difference in performance between two models, ignor-
ing signs. This test statistic follows approximately a standard normal distribu-
tion. The t-test is a general statistical test which is typically used to assess the
difference between two responses. Under the null hypothesis, this test statistic
follows a Student t-distribution.

3.5 Results

This section reports on the results of the techniques discussed in Section 3.3.
The results both with and without application of the backward input selection
procedure, as explained in Section 3.4.4, are provided in Tables 3.6, 3.7, and
3.8, respectively for the MdMRE, Pred25, and Spearman’s rank correlation. The
top panels show the results without backward input selection and the bottom
panels with backward input selection. The last column of each table displays
the Average Ranks (AR) for the different techniques.

The best performing technique is reported in bold and underlined. Results
that are not significantly different from the best performing technique at 95%
are tabulated in boldface font, while results significantly different at 99% are
displayed in italic script. Results significant at the 95% level but not at the 99%
level are displayed in normal script.
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3.5.1 Techniques

0 2 4 6 8 10 12 14 16 18 20 22 24

RoR

MLP

OLS

RBFN

RiR

M5

CBR k = 5

LS−SVM

MARS

CBR k = 1

CBR k = 3

CBR k = 2

CART

BC + OLS

LMS

Log + OLS

average rank

0 2 4 6 8 10 12 14 16 18 20 22 24

RoR

RBFN

MLP

RiR

OLS

CBR k = 1

M5

CBR k = 3

CBR k = 5

LS−SVM

CBR k = 2

CART

MARS

BC + OLS

LMS

Log + OLS

average rank

0 2 4 6 8 10 12 14 16 18 20 22 24

RBFN

MLP

RoR

CBR k = 2

CBR k = 1

CBR k = 5

CBR k = 3

MARS

CART

LMS

LS−SVM

OLS

M5

RiR

BC + OLS

Log + OLS

average rank

Figure 3.4: Ranking without backward in-
put selection for MdMRE, Pred25, and
Spearman’s rank correlation in resp. top,
middle and bottom panel

The results of the different modeling
techniques are compared by first ap-
plying a Friedman test, followed by
a Bonferroni-Dunn test. The Fried-
man test resulted in a p-value close
to zero (p-values between 0.0000
and 0.0002) indicating the existence
of significant differences across the
applied techniques in all three cases
(MdMRE, Pred25, and rs). In a
next step, the Bonferroni-Dunn test
to compare the performance of all
the models with the best perform-
ing model is applied. The results
are plotted in Fig. 3.4. The hor-
izontal axis in these figures corre-
sponds to the average rank of a tech-
nique across the different data sets.
The techniques are represented by a
horizontal line; the more this line is
situated to the left, the better per-
forming a technique is. The left end
of this line depicts the average rank-
ing while the length of the line cor-
responds to the critical distance for
a difference between any technique
and the best performing technique
to be significant at the 99% confi-
dence level. In case of 16 techniques
and 9 data sets, this critical distance
is 7.0829. The dotted, dashed and
full vertical lines in the figures in-
dicate the critical difference at re-
spectively the 90%, 95% and 99%
confidence level. A technique is sig-
nificantly outperformed by the best
technique if it is located at the right
side of the vertical line.

Data sets in the domain of soft-
ware effort estimation have specific
characteristics [282]. They often have a limited number of observations, are
affected by multicollinearity, and are known to be positively skewed and to con-
tain outliers. Different techniques (both linear and non linear models, tree/rule
induction techniques and case based reasoning) have been applied in this study
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that cope with these characteristics in different ways.
It can be seen from Tables 3.6, 3.7, and 3.8 that ordinary least squares

regression with logarithmic transformation (Log + OLS) is the overall best
performing technique. However, a number of other techniques including least
median squares regression, ordinary least squares regression with Box Cox trans-
formation, and CART, are not significantly outperformed by Log + OLS, see
Fig. 3.4. There are a few notable exceptions such as the Euroclear data set
(all three performance measures), the USP05 data set (in case of MdMRE and
Pred25), and both the Desharnais as well as the Maxwell data set (only for
Pred25). The good performance of Log + OLS can be attributed to the fact
that such a transformation typically results in a distribution which better re-
sembles a normal distribution. The range of possible values is also reduced thus
limiting the number of outliers. Applying a Jarque-Bera test for normality on
the log transformed data, it was found that in all but three cases (USP05, Eu-
roclear and ISBSG), the null hypothesis of normality could not be rejected at
α = 5%. Related to the normality of the distribution is the number of extreme
values or outliers. For instance, if an outlier is defined as an observation at a
distance of more than 1.5 times the inter quartile range of either the first or the
third quartile, applying the logarithmic transformation removes all outliers in
case of both the Cocnasa and the Coc81 data sets. In case of the ISBSG, Ex-
perience, and ESA data sets, less than 2% of the observations can be regarded
as outliers after applying a log transformation. In case of the USP05 data set,
such transformation was less able to reduce the number of outliers as still 23%
of the observations are outliers. For the other data sets, the fraction of outliers
was reduced to below 7% of all data.

The aspect of multicollinearity can be quantified using the Variance Inflation
Factor (VIF), which is defined as:

V IFj =
1

1−R2
j

�� ��3.20

with R2
j the coefficient of determination obtained by regressing x(j) on all other

independent attributes. A value higher than 5 is typically considered to be
an indication of multicollinearity. Most data sets are characterized by limited
multicollinearity; only Desharnais, USP05, ISBSG and Euroclear data sets had
a VIF higher than 5 for over 50% of their attributes. Still, it can be remarked
that in these cases ridge regression, which is specifically designed to cope with
multicollinearity, did not score particulary well. A possible explanation is that
the regression models did not consider all attributes concurrently but instead
used a stepwise selection procedure.

Finally, taking the number of observations into account, one would expect
nonlinear techniques such as SVM, RBFN and MLP to perform better in case of
larger data sets. However, even in case of the largest data set (ISBSG), state of
the art non-linear techniques did not perform particulary well. While LS-SVM
did not perform statistically worse than Log + OLS, both MLP and RBFN were
found to be outperformed. Both tree/rule induction techniques (CART and M5)
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were not statistically outperformed by Log + OLS. A possible explanation is
that MLP, LS-SVM, and RBFN take all attributes jointly into account while
other techniques consider only one attribute at the time. Hence, these other
techniques are less affected by the sparseness of the data sets. Observe that a
total of 1,160 observations is not large compared to a number of other domains
[23].

It should be noted that different performance metrics measure different prop-
erties of the distribution of êi [179], and thus could give inconsistent results if
they are used to evaluate alternative prediction models. Similar observations can
be made in other studies that used multiple performance metrics, e.g. [62,244].

The Pred25 metric favors techniques that are generally accurate (e.g. fall
within 25% of the actual value) and occasionally widely inaccurate. The MdMRE
is an analogous measure as it is also outlier resistent. Both can therefore be con-
sidered to be measures benefiting from properly calibrated models. This can be
seen by the similar results for both the Pred25 and the MdMRE, see Fig. 3.4
top and middle panel. The results for the Spearman’s rank correlation are
slightly more deviant, since for instance RiR scores third and model trees (M5)
fourth, see Fig. 3.4, bottom panel. The best and worst performing techniques
are however similar. The Spearman’s rank correlation is a measure of mono-
tonic relationship between the actual and the predicted values and is therefore
insensitive to the precise calibration of the models.

Focussing on the results in terms of MdMRE, cfr. Table 3.6, it can be
seen that Log + OLS is the best performing technique as it is ranked first in
seven out of nine cases. Hence, the best average rank is attributed to Log +
OLS, followed by LMS, BC + OLS, CART, various implementations of CBR,
and MARS, none of which is significantly outperformed at the 95% significance
level. The excellent results of various implementations of regression allow to
build accurate and comprehensible software effort estimation models which can
be checked against prior domain knowledge. These findings are consistent with
the studies of Briand et al. [45, 46], who found that OLS is a good performing
technique on previous versions of both Experience and ESA data sets. From a
business perspective, the aspects of understandability and trust are important,
thus techniques resulting in comprehensible and justifiable models (i.e. are in
line with generally accepted domain knowledge) are preferred [221]. The good
result of CART, which is not outperformed by the best performing technique
at the 95% significance level, is interesting since CART allows to induce easy to
understand piecewise linear prediction functions, and permits to verify whether
the learned model is in line with prior domain knowledge, see Fig. 3.2 (d).
Note however that models occasionally would need to be recalibrated on newly
collected data, as relationships between attributes can change over time [87,
177]. The fact that several learners perform similar is in line with previous
benchmarking studies in related domains like software fault prediction [200].

Cocomo
A comparison can be made between formal models such as Cocomo and data
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Data set Technique MdMRE Pred25 rs

Cocnasa Cocomo 26.9 46.2 0.966

Log + OLS 30.4 45.2 0.889

Coc81 Cocomo 31.9 36.5 0.991

Log + OLS 27.6 49.2 0.863

Table 3.9: Results Cocomo models

mining techniques. However, as indicated in Section 3.2, applying Cocomo re-
quires a data set to be in a suitable format. Hence, only two data sets qualify
for this comparison (the Coc81 and Cocnasa data sets). Similar to data min-
ing techniques which are typically tuned to better fit the underlying problem
area, the coefficient a and the exponent b of the Cocomo model can be adjusted
[35, ch. 29]. This requires the use of a separate training and test sample. Again,
the same leave one out approach is followed to allow for better comparison to
the other results, tuning both parameters on the complete data set minus one
observation. The calibrated model is then used to estimate the effort of the
test observation. Table 3.9 shows the result of this experiment. Comparing
the Cocomo results to other data mining techniques shows that Cocomo yields
similar results as regression with logarithmic transformation, which was pre-
viously found to be the best technique in both cases. Bold font indicates the
best performing technique; no statistical significant differences were found by
comparing the results between Cocomo and Log + OLS. Analogous results are
to be expected as a Cocomo model is similar in nature to a regression model
with logarithmic transformation.

It is interesting to note that the performance of Cocomo on the Coc81 data
set can partially be attributed to the way the Cocomo model was constructed;
the original Cocomo model was built and calibrated (including the precise val-
ues for each of the effort multipliers) on 56 of the 63 observations, with the
(independent) test set consisting of 7 observations [35, ch. 29].

It should be noted that not all attributes are equally important in estimating
software effort. Therefore in the next section, the results of a backward input
selection procedure are discussed.

3.5.2 Backward input selection

The lower panels of Tables 3.6, 3.7, and 3.8 show the results of the generic back-
ward input selection procedure. A Friedman test to compare the results with
backward input selection and without backward input selection is performed (in
this case will k equal 2 and P equal 9), yielding a p-value close to zero (p-value
< 0.02 in all three cases). This indicates that on aggregate, applying input
selection yields significantly better performance. While this result might seem
counterintuitive at first sight, since information on certain attributes is removed
from the data set, it makes sense that learning from a smaller data set, con-
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Figure 3.5: Performance evolution of the input selection procedure for CART
applied on the ISBSG data set

taining a limited set of highly predictive attributes, is easier than learning from
a noisy data set containing many redundant and/or irrelevant attributes. The
resulting models with input selection will also be more stable, since potential
collinearity between attributes will be reduced, and are also preferable from an
interpretation point of view. This also confirms the work of e.g. Chen et al. [57],
who found that a higher accuracy could be achieved using a wrapper approach in
case of Cocomo, and the findings of Azzeh et al. [18], who found similar results
in case of CBR on the Desharnais and the ISBSG data set. These findings were
also confirmed by Li et al. [205], using a mutual information filter approach
on the Desharnais and the Maxwell data set. Fig. 3.5 plots a typical result of
the backward input selection procedure which is exemplary for most techniques
and data sets. On the horizontal axis, the number of variables remaining in
the model are given, while on the vertical axis, the performance measured in
MdMRE is provided. The number of remaining attributes is selected by identi-
fying the elbow point in the performance evolution of the different techniques.
Fig. 3.6 provides box plots of the number of selected attributes. In each box plot,
the central line indicates the median number of selected attributes, while the
edges of the box represent the 25th and the 75th percentiles for each technique.
The whiskers extend to the most extreme numbers of selected attributes that
are not considered to be outliers. Outliers finally are represented by crosses.

Technique evaluation
Drawing on the same statistical procedures, the results of the Friedman test
indicate the existence of significant differences between techniques (p-values be-
tween 0.0000 and 0.0066) and subsequently, Bonferroni-Dunn tests are applied.
The results of these tests are plotted in Fig. 3.7. From these plots, it can be
concluded that in all three cases the best performing technique is again Log +
OLS.
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(a) Boxplots of RiR, M5, LMS, OLS, BC + OLS, Log + OLS,
CART, and MARS

RoR LS−SVM MLP CBR k=1 CBR k=2 CBR k=3 CBR k=5 RBFN
0

2

4

6

8

10

12

14

16

18

N
u
m

b
e
r

o
f
a
t
t
r
ib

u
t
e
s

s
e
le

c
t
e
d

(b) Boxplots of RoR, LS-SVM, MLP, CBR k=1, CBR k=2, CBR
k=3, CBR k=5, and RBFN

Figure 3.6: Boxplot of the number of attributes selected by the different tech-
niques
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Figure 3.7: Ranking with backward input
selection for MdMRE, Pred25, and Spear-
man’s rank correlation in resp. top, mid-
dle and bottom panel

Analogous to the case without
input selection, the results from
both MdMRE and Pred25 are simi-
lar. The best performing technique
is Log + OLS, followed closely by
a number of other techniques in-
cluding LMS, BC + OLS, MARS,
LS-SVM, and various implementa-
tions of CBR. Again, more deviant
results can be observed in case of
the Spearman’s rank correlation, al-
though the best performing tech-
nique is similar to both other met-
rics. Fig. 3.9 provides an example
of an OLS + Log model after appli-
cation of the generic backward in-
put selection procedure on both the
Experience and the ESA data set.
An advantage of regression models
is the possibility to verify whether
the model is in line with domain
knowledge. For instance, it can be
anticipated that larger projects re-
quire more effort, and thus a posi-
tive coefficient is more likely. Simi-
larly, in case of more programming
experience, a lower effort and thus
a negative coefficient is expected.

While the Friedman test indi-
cates that on average the results are
better with input selection, analo-
gous conclusions can be drawn to
which techniques are more or less
suited for software effort estima-
tion. Log + OLS is again overall
the best performing technique while
a number of nonlinear techniques
such as RBFN are less able to pro-
vide good estimations. Whether a
specific technique on a specific data set benefits from selecting a subset of the
data needs to be verified empirically.

Selected attributes
It can be seen from Fig. 3.6 that the number of selected attributes by the dif-
ferent techniques is rather low, typically ranging from two to ten. This means
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that a surprisingly small number of attributes suffices to construct an effec-
tive software effort estimation model. Hence, the largest performance increase
can be expected from improving the quality of data, instead of collecting more
attributes of low predictive value. Data quality is an important issue in the
context of any data mining task [235,236].

In Section 3.4.1, four attribute types were identified that are present in the
software effort estimation data sets: size, environment, project, and develop-
ment. As a result of the input selection procedure, it is possible to identify the
most important attribute types in the data sets, see Fig. 3.8. Size, development,
and environment are considered to be attributes of high importance for software
effort prediction. It should be noted that the attribute type ‘size’ typically only
covers a limited number of attributes in a data set. Since this type of attribute
is selected in nearly all cases, it is therefore considered to be highly predictive.
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Figure 3.8: Bar chart of the average number
of selected attributes per data set and per at-
tribute type

Another observation that
can be made, is that all four
types of attributes are included
in the set of most predic-
tive attributes selected dur-
ing the input selection pro-
cedure. Hence, none of the
four attribute types can be
omitted from the data sets
without incurring some perfor-
mance loss. Focussing on spe-
cific attribute categories, some
attributes which are typically
good predictors can be identi-
fied. For instance, program-
ming language is a ‘develop-
ment’ type attribute that is of-
ten selected by the input selec-
tion procedure. This is to be
expected, since programming

language was previously found to have an important impact on development
effort, e.g. by Albrecht et al. [5]. Concerning environment attributes, variables
related to team size and company sector prove to be good predictors to estimate
effort as well.

We also considered a minimal Redundancy, Maximum Relevance (mRMR)
filter approach [255] as an alternative to the backward input selection in this
study, similar to the study of Li et al. [205]. Using this approach, we selected
the top ten ranking attributes. This filter approach gave however similar results
to the backward input selection approach, i.e. also indicating an increased
performance by taking a highly predictive set of attributes and the importance
of the size-related attribute. In order not to overload this chapter, the results
of this filter are not further detailed.
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Data set / Obtained model

Experience - Reduced model
Log(êi) = 3.71 + 0.72×log(size) + 0.12×(IT staff req.)

- 0.09×(Usability req.) - 0.73×(Company2)
- 0.42×(Company3)

ESA - Reduced model
Log(êi) = 1.51 + 0.41×log(size) + 0.92×log(Team size)

+ 0.14×(Mem. constraint) + 0.55×(Fortran/AS) - 0.77×(UK)
- 0.23×(Lang. experience) - 0.82×(ESA project category 3)

Figure 3.9: Example of the best performing technique

3.6 Discussion
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RiR 47.8 29.8 18.0 Medium

M5 44.1 32.9 11.2 Low

LMS 36.5 38.1 -1.6 Low

OLS 43.1 34.7 8.4 Low

BC + OLS 36.9 37.7 -0.8 Low

Log + OLS 33.5 31.4 2.1 Low

CART 47.5 27 20.5 Low

MARS 44.7 31.3 13.4 High

RoR 39.6 46 -6.4 Low

LS-SVM 45.8 28.6 17.1 High

MLP 51.5 33 18.5 High

CBR k = 1 37.3 38.3 -1 Low

CBR k = 2 41.4 33 8.4 Low

CBR k = 3 45.2 30 15.2 Low

CBR k = 5 46.2 28.6 17.6 Low

RBFN 33.6 49.1 -15.5 Low

Table 3.10: Overview of calibration and computation time

The results of this benchmarking study partially confirm the results of pre-
vious studies [45,46,244]. Simple, understandable techniques like OLS with log
transformation of attributes and target, perform as good as (or better than)
nonlinear techniques. Additionally, a formal model such as Cocomo performed
at least equally good as OLS with log transformation on the Coc81 and Coc-
nasa data sets. These two data sets were collected with the Cocomo model in
mind. However, this model requires a specific set of attributes and cannot be
applied on data sets that do not comply with this requirement. Although the
performance differences can be small in absolute terms, a minor difference in es-
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timation performance can cause more frequent and larger project cost overruns
during software development. Hence, even small differences can be important
from a cost and operational perspective [162].

These results also indicate that data mining techniques can make a valuable
contribution to the set of software effort estimation techniques, but should not
replace expert judgement. Instead, both approaches should be seen as comple-
ments. Depending on the situation, either expert driven or analytical methods
might be preferable as first line estimation. In case the experts possess a signif-
icant amount of contextual information not available to an analytical method,
expert driven approaches might be preferred [161]. An automated data mining
technique can then be adopted to check for potential subjective biases in the
expert estimations. Additionally, various estimations can be combined in alter-
native ways to improve the overall accuracy, as investigated by e.g. MacDonell
et al. [212] which concluded ‘that there is indeed potential benefit in using
more than one technique’. A simple approach could be to take the average
across estimations, while a more advanced approach would investigate in which
case a specific technique yields the most accurate estimation. When combining
estimates of techniques, the potential bias of the technique, i.e. the tendency
to over- or underestimate effort, should be taken into account. Since effort is a
continuous attribute, typically some error is to be expected. However, if the es-
timate is far from the actual value, e.g. more than 25%, the estimate can not be
considered ‘accurate’. The first two columns in Table 3.10 provide the average
over- and underestimation per technique across all data sets. The third col-
umn aggregates these two values, indicating whether a technique has an overall
tendency to over- or underestimate. Combining different techniques increases
computational requirements and hampers comprehensibility. The required com-
putation time is dependent on a number of different aspects, including data set,
hardware, technique, empirical setup, and parameter tuning. An indication of
computational requirements is also presented in the last column of Table 3.10.

A third conclusion is that the selection of a proper estimation technique can
have a significant impact on the performance. A simple technique like regression
is found to be well suited for software effort estimation which is particularly
interesting as it is a well documented technique with a number of interesting
qualities like statistical significance testing of parameters and stepwise analysis.
This conclusion is valid with respect to the different metrics that are used to
evaluate the techniques. Furthermore, it is shown that typically a significant
performance increase can be expected by constructing software effort estimation
models with a limited set of highly predictive attributes. Hence, it is advised
to focus on data quality rather than collecting as much predictive attributes as
possible. Attributes related to the size of a software project, to the development,
and environment characteristics, are considered to be the most important types
of attributes.

Finally, the comprehensibility of the estimation model is often of paramount
importance to instigate model acceptance in a business setting. While log-
linear models are understandable to a certain level, rule sets or decision trees
are considered more comprehensible to end users [73, 145]. This topic has been
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investigated only to a limited extent in software effort estimation; see e.g. [146].
In a follow-up study, we investigated the extraction of regression rules from the
ISBSG R11 data set; however, for reasons of brevity, we refer to Setiono et al.
for further details [278].
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All sorts of computer errors are
now turning up. You’d be sur-
prised to know the number of doc-
tors who claim they are treating
pregnant men.

Isaac Asimov, 1920 – 1992 4
Comprehensible software fault prediction

with Bayesian Network classifiers

In the fourth chapter, we turn towards a second key topic in empirical software
engineering: software fault prediction. This time, we move forward in the soft-
ware development cycle, situating ourselves after the actual coding, and before
software testing. Zooming in on the source code, regions which are more likely to
contain faults are identified, and can subsequently be made target of heightened
software testing efforts. Experience learns that thoroughly testing the code base
can pose an insurmountable expense to developers, and software fault predic-
tion offers solutions to alleviate this issue. This chapter considers the popular
Naive Bayes classifier, of which predictive performance and comprehensibility
are often cited as major strengths, and further contributes to the literature by
considering alternative Bayesian Network (BN) classifiers which boost the pos-
sibility to construct simpler networks with less nodes and arcs. Furthermore,
the applicability of the Markov blanket principle for feature selection, which is a
natural extension to BN theory, is investigated. The results, both in terms of the
AUC and the recently introduced H-measure, are rigorously tested using again
the statistical framework of Dems̆ar. It is concluded that simple and compre-
hensible networks with less nodes can be constructed using BN classifiers other
than the Naive Bayes classifier. Furthermore, it is found that the aspects of
comprehensibility and predictive performance need to be balanced out, and also
the development context is an item which should be taken into account during
model selection.

This chapter is based on the following paper

- K. Dejaeger, T. Verbraken and B. Baesens, “Towards comprehensible software
fault prediction models using Bayesian network classifiers,” IEEE Transactions
on Software Engineering, Accepted for publication.

4.1 Introduction

The ubiquitous presence of computers has given rise to novel research fields
such as software development, computer engineering and artificial intelligence
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[75] while at the same time enabling novel developments in other domains like
medicine, telecommunications and image processing [111, 325, 326]. In spite of
all the efforts invested in the field of software engineering, the development of
software remains jeopardized by high cancelation rates and considerable delays
[162]. Chapter 1 already attested the importance of software testing processes
and the impact software faults potentially have on corrective maintenance bud-
gets. As such, the importance of software testing has long been recognized; e.g.
the waterfall approach presented in Fig. 1.1 specifies the implementation of a
separate testing phase [270]1. The first work on the topic of software testing
dates from 1975 [115] and since the pioneering work of Goodenough, numerous
books and papers have been published on this topic. Software testing expenses
can amount up to 60% of the overall development budget [130], and several
approaches to support these efforts have been proposed.

A key finding to software testing is the fact that faults tend to cluster; i.e.
to be contained in a limited number of software modules [286]. Gyimóthy et
al. found while investigating the open source software web and email suite
Mozilla that bugs were present in 42.04% of all software classes [119]. Even
more skewed distributions have been reported by others; e.g. Ostrand et al.
who investigated several successive releases of a large inventory system, stated
that ‘At each release after the first, faults occurred in 20% or fewer of the files’
[250]. In fact, it has been shown that the distribution of faults over a system can
be modeled by a Weibull probability distribution [340]. This motivates the use
of software fault prediction models which provide an upfront indication whether
code is likely to contain faults; i.e. is fault prone. A timely identification of this
fault prone code will allow for a more efficient allocation of testing resources
and an improved overall software quality. To construct such a prediction model
which discriminates between fault prone code segments and those presumed
to be fault free, the use of static code features characterizing code segments
has been advocated [52, 54]. Static code features which can be automatically
collected from software source code have proven to be useful [289], and are
widely used in academic research as well as in industry settings [230,317].

A myriad of different approaches to assist in the fault prediction task has
previously been proposed, including expert driven methods, statistical models
and machine learning techniques [54]. In spite of the use of various advanced
techniques including association rule mining [25], support vector machines [88],
neural networks [262], genetic programming [91], and swarm intelligence [320], it
is recognized that their gain compared to simple techniques such as Naive Bayes
is limited [230]. The use of Naive Bayes to model the presence of software faults
is also advocated by other researchers citing predictive performance and com-
prehensibility as its major strengths [55, 95, 315]. Underlying to Naive Bayes
is the assumption of conditional independency between attributes. Despite the
restrictions on the network structure imposed by this conditional independence
assumption, Naive Bayes classifiers have been found to perform surprisingly well

1Data collected from different application domains by the ISBSG (International Software
Benchmarking Standards Group) indicates that a waterfall-like approach remains commonly
used in modern software development, www.ISBSG.org.
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in e.g. the medical domain [308]. A similar conclusion was also echoed by Holte,
who compared the complexity and accuracy of different rule learners [142]. He
noted that simple models are often not outperformed by more complex ones and
that in such case, the simpler model should be selected. The good performance
of Naive Bayes compared to other classifiers inspired several modifications re-
laxing the conditional independence assumption to allow the construction of
more complex network structures. Well-known examples include Augmented
Naive Bayes and General Bayesian Network classifiers. The latter even impose
no restrictions on the network structure and various algorithms to learn a suit-
able network structure have been introduced. Two such algorithms, together
with various Augmented Naive Bayes classifiers and a selection of benchmark
classifiers constitute the set of techniques under consideration in this study.
Additionally, the use of the Markov blanket feature selection procedure, which
provides a natural way to reduce the set of available features, is also investi-
gated. The results of the analyses are presented both in terms of AUC (Area
Under the ROC Curve) and the novel H-measure and are subjected to rigorous
statistical testing to verify their significance.

The remainder of this chapter is structured as follows.
Section 4.2 positions this chapter in the software fault prediction literature.
Section 4.3 discusses the working of Naive Bayes classifiers and provides a num-
ber of extensions hereon, also giving attention to the Markov blanket feature
selection procedure.
Section 4.4 reflects upon empirical setup, and provides the rationale for using
the novel H-measure.
Section 4.5 elaborates on the suitability of extending the Naive Bayes classifier
in a software fault prediction context from a comprehensibility point of view.
Section 4.6 finally provides a set of general conclusions.

4.2 Related work

The observation that costs incurred to correct faults increase exponentially with
the time they remain uncorrected in the system sparked interest into early warn-
ing systems, trying to locate fault prone code already during development, be-
fore the software goes gold. Section 1.4 offers an overview of possible approaches
hereto, the protagonist being software fault prediction which explores the char-
acteristics of individual code segments in order to identify those segments that
are fault prone [230] or to predict the number of faults in each segment [251].
In the first, software fault prediction is regarded as a classification problem
while the latter approach considers it to be a regression problem. Note that in
this study, an emphasis is put on the classification point of view. To this pur-
pose, a large number of software code characteristics (also referred to as ‘static
code features’) have been introduced to the domain of software fault prediction.
These include McCabe and Halstead metrics, metrics adopting object-oriented
programming concepts such as the Chidamber-Kemerer (CK) metrics suite [61]
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or the Conceptual Cohesion of Classes (C3) measure introduced in [218], as
well as various file and component based metrics [215, 250]. Note that some
of these metrics can be collected on different granularity levels; e.g. McCabe
and Halstead measures have been explored on the level of software functions,
classes and files. Fenton et al. [94] conjectured that the most widely used static
code features include LOC (Lines Of Code) based measures, Halstead metrics
and McCabe complexity metrics, which was also echoed by Catal et al. [54].
Evidence hereon can be found in the publicly available software fault prediction
data; e.g. all projects in the NASA MDP repository contain these metrics at
the level of software modules and also other data sets rely upon these values
[174,316,317,344].

There has been considerable debate about the extent to which software fault
prediction models constructed from these metrics actually contribute to support-
ing software testing processes. It is e.g. demonstrated by Fenton and Pfleeger
that by using different language constructs, source code providing the same func-
tionality can have different static code values [96]. Furthermore, while several
studies failed to validate the usefulness of e.g. McCabe cyclomatic complexity
metrics for software fault prediction [280, 281], other studies showed opposite
results [54].

More recently, the validity of software fault prediction using static code
features has been empirically illustrated by e.g. Menzies et al. who stated
that static code features are useful, easy to use and widely used [230]. This
observation was later also confirmed by other work, see e.g. [317].

Useful:
Several studies have reported on the inability of real-life fault predictors to
obtain similar detection rates as static code based classification techniques.

• A panel consisting of academic and business experts at the IEEE Metrics
2002 symposium concluded that manual software reviews typically account
for around 60% of all identified faults, independent of the domain or level of
maturity of the organization [289]. Similar (or even worse) defect detection
capabilities were observed amongst other industrial defect detectors [230].

• Empirical evidence comparing an expert driven approach with the use of
statistical techniques to locate software faults indicated the superior per-
formance of the latter stating that ‘When it comes to comparing both
methods we found that statistical models outperformed expert estima-
tions’ [309]. Other advantages of adopting static code based classifiers
that were identified include improved fault prediction efficiency and the
ability to cope with large data sets, resulting in possibly finer grained fault
prediction. The study also found human experts to be unable to grasp or
understand the structure of large systems and as a result unable to e.g.
provide a ranking of the fault proneness across all system components.

On the flip side, human experts might be better able to incorporate quali-
tative information when predicting the fault proneness of a software com-
ponent; however, this advantage proved not to outweigh the disadvantages.
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By contrast, using static code based classification techniques, noticeably better
detection rates have been recorded. For instance, Menzies et al. reported an
average detection rate of 71% [230].

Easy to use:
Static code features such as McCabe and Halstead metrics can be mined from
the source code using automated methods. Several tools have been proposed,
including McCabe IQTM,2, RUBY [55], EMERALD [144] and Prest [183] to
assist practitioners in this effort. In addition to static code features character-
izing each code segment, labels indicating whether faults were found are needed
to construct software fault prediction models. This often requires a matching
between data contained in a bug database such as Bugzilla c⃝,3 and the mined
source code. Various text mining techniques exist to facilitate this matching
effort [99].

Widely used:
Static code features have been extensively investigated by researchers [52, 54]
and their use in industry has been long reckoned, e.g. [94]. It is argued that some
large government software contractors will not review code segments unless they
are flagged as fault prone [230]. Moreover, the ability to collect data concerning
the software development process is also a requirement when trying to achieve
Capability Maturity Model Integration R⃝ (CMMI) level 2 appraisal. Obtaining
such appraisal can be an obligation to compete for (government) contracts [36].

Researchers have adopted a myriad of different techniques to construct soft-
ware fault prediction models. These include various statistical techniques such
as logistic regression and Naive Bayes which explicitly construct an underlying
probability model. Furthermore, different machine learning techniques such as
decision trees, models based on the notion of perceptrons, support vector ma-
chines, and techniques that do not explicitly construct a prediction model but
instead look at a set of most similar known cases have also been investigated. A
taxonomy of the most often employed classification techniques for software fault
prediction is offered in Fig. 4.1. References to earlier work using each technique
are provided between square brackets. While this overview does not attempt
to be exhaustive, it is clear that Bayesian Network (BN) classifiers are in fact
one of the most popular techniques to model the presence of software faults in
a system. One of the earliest references to BN classifiers in this context can
be found in the work of Fenton et al. who reckoned that these techniques of-
fer several advantages including the ability to explicitly model uncertainty, the
good comprehensibility and the avoidance of multicollinearity related problems
[94]. They also highlighted the possibility of expert driven BN creation, which
however deviates from how such classifiers are commonly utilized in machine
learning literature. Persuaded by these remarks, several authors have used such
models [200, 230, 315, 317]. Especially the Naive Bayes classifier has been care-
fully investigated and has been found to perform exceptionally well, despite
being a very simple technique. For instance, Menzies et al. found Naive Bayes

2www.mccabe.com
3www.bugzilla.org
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with logarithmic transformation of the inputs to be the best performing predic-
tion model as compared to two rule induction techniques, i.e. C4.5 and OneR
[230]. This result was later partially confirmed by Lessmann et al. who found
an ensemble learner, Random Forest, to be the best performing technique. BN
learners however were not found to be statistically outperformed by this ensem-
ble learner [200]. The assumption of conditional independence underlying Naive
Bayes is typically not met in a software fault prediction context; different static
code features try to measure the same underlying dimensions of the source code.
The relaxation of this assumption has been investigated by Turhan et al., who
used instead of a univariate gaussian approximation of the unknown distribution
of the static code features, a multivariate gaussian approximation [315]. It was
concluded that the independence assumption of Naive Bayes is not harmful for
software defect data after the data was preprocessed using Principal Compo-
nent Analysis (PCA) which maps the data on a set of orthogonal axes. Remark
that by construction, principal components are not correlated to each other. In
our work, the impact of the conditional independence assumption is considered
from a different perspective by investigating BN classifiers that explicitly model
the conditional independence amongst attributes. In another study, Turhan et
al. looked into the use of various attribute weighting heuristics (e.g. heuristics
based on concepts of Shannon’s information theory and statistical methods such
as the PCA scores and the Kullback-Leibler Divergence) to improve BN learners
[314, 315]. As such, they adopted a two stage approach by first applying these
heuristics to rank all attributes and afterwards providing this ranking to the BN
learner. They showed that using weighting heuristics based on Shannon’s infor-
mation theory (information gain and gain ratio) or feature selection techniques
yield improved results. Their findings motivated the inclusion of the Markov
blanket feature selection into this study, which is a feature selection approach
rooted in BN theory.

4.3 Bayesian network classifiers

Complementing the description in Section 2.2.6, this part first presents a general
introduction to Bayesian networks, followed by a description of the Naive Bayes
classifier. Next, a number of alternative BN classifiers relaxing the assumption
of conditional independence are explained. Two alternative machine learning
techniques, which serve as a benchmark in this study, are also detailed.

4.3.1 Bayesian networks

A Bayesian Network (BN) represents a joint probability distribution over a set
of stochastic variables, either discrete or continuous. It can be visualized as a
graph consisting of nodes representing the individual variables x(j) and directed
arcs indicating the existence of dependencies between variables. Likewise, the
absence of an arc between two nodes x(j) and x(j′) indicates the conditional in-
dependence between both variables given their parents in the graph. Associated
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with each node is a probability table, containing the probability distribution of
each variable conditional on the direct parent(s) in the graph [254]. Under-
lying BN is the Bayes theorem, which formulates the posterior probability of
the presence of faults in terms of prior probabilities and the reverse conditional
probability:

P (yi = 1|xi) =
P (xi|yi = 1) P (yi = 1)

P (xi)
.

�� ��4.1

Note that P (xi) acts as a normalizing constant herein and can be ignored.
More formally, a BN comprises two parts B = ⟨G,Θ⟩. G is a directed

acyclic graph (DAG) conveying the direct dependence relationships within the
data set whereas the second part, Θ, represents the conditional probability
distribution of each variable. Adopting the notation of Cooper & Herskovits [65],
Πx(j)

represents the set of direct parents of x(j) in G. Θ contains a parameter
θx(j)|Πx(j)

= PB(x(j)|Πx(j)
) for each possible value of x(j), given each possible

combination of values of all direct parents. The network B then represents the
following joint probability distribution:

PB(x(1), . . . , x(n)) =
n∏

j=1

PB(x(j)|Πx(j)
) =

n∏
j=1

θx(j)|Πx(j)
.

�� ��4.2

Typically, the task of learning a BN can be decomposed into two subtasks
which are executed sequentially. First, the exact structure G of the network
needs to be determined. In general, it is infeasible to iterate over all possible
network structures and therefore, several constraints can be imposed, leading
to different learning algorithms. After establishing the exact network structure
G, the parameters associated with each node need to be estimated. In this
study, the empirical frequencies as observed in the training data Dtrn are used
to estimate these parameters:

θx(j)|Πx(j)
= P̂Dtrn(x(j)|Πx(j)

).
�� ��4.3

It can be shown that these estimates maximize the log likelihood of the network
B given the training data Dtrn. Note that these estimates might be further
improved by a smoothing operation, e.g. by using a Laplace correction or an
M-estimate [106].

Generally, BN classifiers can be considered as probabilistic white-box clas-
sifiers. They allow to calculate the (joint) posterior probability distribution of
any subset of unobserved stochastic variables, given that the variables in the
complementary subset are observed. This functionality enables the use of BN as
statistical classifiers which provide a final classification by selecting an appropri-
ate threshold on the posterior probability distribution of the (unobserved) class
node. Alternatively, assuming all misclassification costs are equal, a winner-
takes-all rule can be adopted [83]. A pivotal ability of these classifiers is the
use of graphical artifacts which facilitates the understanding of complex and
seemingly contradictory relationships within the data [94].
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x(4)

x(2)

x(3)

x(1)

y

x(1) [0;10) 0.30

Condition

count

[10;20) 0.45

[20;∞) 0.25

x(1) [0;10) [10;20) [20;∞)

x(2) [1;3) 0.40 0.20 0.55

Cyclomatic

complexity

[3;5.5) 0.55 0.25 0.35

[5.5;∞) 0.05 0.55 0.10

x(3) [0;17) 0.30

LOC comment [17;∞) 0.70

x(3) [0;17) [17;∞)

x(2) [1;3) [3;5.5) [5.5;∞) [1;3) [3;5.5) [5.5;∞)

y 0 0.95 0.88 0.85 0.90 0.87 0.91

Faulty module 1 0.05 0.12 0.15 0.10 0.13 0.09

y 0 1

x(4) [0;0.125) 0.25 0.25

Halstead

error

estimate

[0.125;0.2) 0.15 0.50

[0.2;0.285) 0.10 0.05

[0.285;∞) 0.50 0.20

P
(

y = 0, x(1) ∈ [20;∞), x(2) ∈ [3; 5.5), x(3) ∈ [17;∞), x(4) ∈ [0.2; 0.285)
)

= 0.87 · 0.25 · 0.35 · 0.70 · 0.10

= 0.00533

P
(

y = 1, x(1) ∈ [20;∞), x(2) ∈ [3; 5.5), x(3) ∈ [17;∞), x(4) ∈ [0.2; 0.285)
)

= 0.13 · 0.25 · 0.35 · 0.70 · 0.05

= 0.00040

Joint probability (Eq. 4.2)

P
(

y = 0|x(1) ∈ [20;∞), x(2) ∈ [3; 5.5), x(3) ∈ [17;∞), x(4) ∈ [0.2; 0.285)
)

= 0.00533
0.00533+0.00040 = 0.93

P
(

y = 1|x(1) ∈ [20;∞), x(2) ∈ [3; 5.5), x(3) ∈ [17;∞), x(4) ∈ [0.2; 0.285)
)

= 0.00040
0.00533+0.00040 = 0.07

Conditional probability

Condition count, x(1) ∈ [20;∞)
Cyclomatic complexity, x(2) ∈ [3; 5.5)
LOC comment, x(3) ∈ [17;∞)
Halstead error estimate, x(4) ∈ [0.2; 0.285)

Classification example

Figure 4.2: Bayesian network classification by example

A simple example of a BN classifier is given in Fig. 4.2, complemented with
a example code segment which is presented to this classifier. Remark that by
considering the characteristics of this segment and the information conveyed in
the Bayesian network, the posterior probability that this particular instance will
be faulty can be computed as follows:

P
(
y|x(1), x(2), x(3), x(4)

)
=

P
(
y, x(1), x(2), x(3), x(4)

)
P
(
x(1), x(2), x(3), x(4)

) .
�� ��4.4

It can be easily observed from Fig. 4.2 that according to the winner-takes-all
rule, the code segment will be classified as being not fault prone. In what follows,
several structure learning algorithms for the construction of BN classifiers will
be discussed.
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4.3.2 The naive bayes classifier

x(1)

x(2) x(3)

x(4)

y

x(5)

Figure 4.3: Naive Bayes network

A first classifier built on the principle of
Bayesian networks is the Naive Bayes clas-
sifier [83]. This classifier merits its conno-
tation to the underlying assumption of con-
ditional independence between attributes,
given the class label. As a result of this
assumption, the DAG associated with a
Naive Bayes classifier is composed of a sin-
gle parent (the unobserved class label y)
and several children, each corresponding to
an observed variable in the data set, Fig.
4.3. In spite of this often oversimplifying assumption, the Naive Bayes classifier
typically performs surprisingly well. Domingos and Pazzani for instance found
the Naive Bayes classifier to sometimes outperform a number of decision tree
induction algorithms, even on data sets with considerable variable dependencies
[81]. This result was also confirmed in a software fault prediction context by
Menzies et al., who found the Naive Bayes classifier to outperform rule based
learners [230].

The Naive Bayes classifier proceeds by calculating the posterior probability
of each class given the vector of observed variable inputs (xi(1), . . . , xi(n)) of
each new code segment using Bayes’ rule (4.1). As a result of the conditional
independence assumption, the class-conditional probabilities can be restated as:

P (xi(1), . . . , xi(n)|yi = y) =
n∏

j=1

P (xi(j)|yi = y).
�� ��4.5

The probabilities P (xi(j)|yi = y) are estimated by using frequency counts for the
discrete variables and a normal or kernel density based method for continuous
variables [158]. Note that as a result of the simplifying assumption of conditional
independence, Naive Bayes classifiers are easy to construct since the network
structure is given apriori and no structure learning phase is required. Another
advantage is its computational efficiency, especially since the model has the
form of a product, which can be converted into a sum by using a logarithmic
transformation. In this study, both Naive Bayes using a kernel density estimate
for continuous variables as well as Naive Bayes after variable discretization are
considered.

4.3.3 Augmented naive bayes classifiers

The promising performance of the Naive Bayes classifier inspired several modifi-
cations to relax the conditional independence assumption. These modifications
are mainly based on adding additional arcs between variables to account for
dependencies present in the data or removing irrelevant or correlated variables
from the network structure. A well known example is the algorithm presented
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by Friedman et al., the Tree Augmented Naive Bayes (TAN) classifier, which
allows every variable in the network to have one additional parent next to the
class node [106]. One other such algorithm is the Semi-Naive Bayesian classifier
developed by Kononenko [188] which partitions the variables into pairwise dis-
joint groups. The latter assumes that x(j) is conditionally independent of x(j′)

if and only if they belong to different groups. By contrast, the Selective Naive
Bayes classifier tries to improve the Naive Bayes classifier by omitting certain
variables to deal with strong correlation among attributes [193].

In this study, the Augmented Naive Bayes classifiers developed by Sacha
[271] are used. Building upon the ideas introduced by Friedman et al., this
family of Bayesian classifiers provides a further relaxation on the TAN approach:
not all attributes need to be dependent on the class node and there does not
necessarily need to be an undirected path between two attributes that does not
pass through the class node. The Augmented Naive Bayes algorithms consist
of a combination of two dependency discovery operators and two augmenting
operators, summarized in Table 4.1. The measure of dependency between two
attributes, the conditional mutual information I(x(j), x(j′)), which is used by
both augmenting operators is defined as follows:

∑
x(j),x(j′)

p
(
x(j), x(j′)|y

)
log

(
p
(
x(j), x(j′)|y

)
p(x(j)|y)p

(
x(j′)

)) if y ≺ x(j)

∑
x(j),x(j′)

p
(
x(j), x(j′)|y

)
log

(
p
(
x(j), x(j′)|y

)
p(x(j))p

(
x(j′)|y

)) if y ≺ x(j′)

∑
x(j),x(j′)

p
(
x(j), x(j′)|y

)
log

(
p
(
x(j), x(j′)|y

)
p(x(j)|y)p

(
x(j′)|y

))if y ≺ x(j), x(j′)

∑
x(j),x(j′)

p
(
x(j), x(j′)

)
log

(
p
(
x(j), x(j′)

)
p(x(j))p

(
x(j′)

)) if y ⊥ x(j), x(j′)

�� ��4.6

Combining the dependency discovery operators with different augmenting
operators from Table 4.1 yields four possible combinations. Note that both
augmenting operators can also be applied directly on a Naive Bayes network,
providing the following six Bayesian network classifiers:

• TAN: Tree Augmented Naive Bayes

• FAN: Forest Augmented Naive Bayes

• STAN: Selective Tree Augmented Naive Bayes

• STAND: Selective Tree Augmented Naive Bayes with Discarding

• SFAN: Selective Forest Augmented Naive Bayes

• SFAND: Selective Forest Augmented Naive Bayes with Discarding

The aim of these classifiers is to find a tradeoff between the simplicity of the
Naive Bayes classifiers (with a limited number of parameters) and the more
realistic and complex case of full dependency between the attributes.
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Dependency Discovery Op. Description

Selective Augmented Naive
Bayes (SAN)

Operator which connects the class node with the at-
tributes it depends on. Starting with an empty set,
SAN greedily searches for possible arcs from the class
variable y to other variables x(j) optimizing a certain
quality measure, see Table 4.2. The selected vari-
able together with an associated arc are added to the
network which is then passed to one of the augment-
ing operators. The latter establishes the dependencies
among all variables x(j), irrespective of their connec-
tion with the class node.

Selective Augmented Naive
Bayes with Discarding (SAND)

Operator which connects the class node with the at-
tributes it depends on, as the SAN operator does. The
difference, however, lies in that SAND will discard all
variables which are not dependent on the class node
before passing the network to one of the augmenting
operators. As a result, the discarded variables are not
part of the network; the difference between a network
resulting from the SAN operator and SAND operator
is illustrated in Fig. 4.4b and 4.4c respectively. Dashed
lines indicate absent arcs or nodes in a network.

Augmenting Operators Description

Tree-Augmenter Operator which builds the maximum spanning tree
among a given set of attributes. The algorithm is
based on a method developed by Chow and Liu [63],
but differs in the way how the mutual information
is calculated. Sacha uses the conditional or uncon-
ditional probability of x(j) and x(j′) depending on
whether there exists an arc between the class node
and the attribute (see formula 4.6). The resulting net-
work can be regarded as a generalization of the net-
work obtained using a TAN classifier, not requiring all
variables to be connected with the class variable.

Forest-Augmenter Operator which is also used to establish dependen-
cies between attributes, but allowing for more flexi-
bility. The forest-augmenter can create dependencies
between variables in the form of a number of disjoint
trees not requiring the existence of an undirected path
between two attributes that does not pass through the
class node. The difference between both augmenting
operators is shown in Fig. 4.4a and 4.4b.

Table 4.1: Augmented Naive Bayes approach: different operators

Except for TAN, all of the above procedures adopt a quality measure to
assess the fitness of a network given the data. Commonly, a distinction is made
between global and local quality measures. The former evaluate the complete
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(c) Selective Forest
Augmented Naive
Bayes with Discarding
network

Figure 4.4: Examples of augmented Bayesian network structures

Quality Measures Description

Standard Bayesian
measure (SB)

This global quality measure was first proposed by [51] and
is proportional to the posterior probability distribution
p(G,Θ|Dtrn) with an added penalty term for network size.
The network size or dimensionality is defined as the num-
ber of free parameters required to fully specify the joint
probability distribution, PB(x(1), ..., x(n)).

Local Leave-One-
Out-Cross Validation
(LOO)

This local quality measure calculates iteratively the class
probability conditional on the data, P (y|x(1), . . . , x(n)),
using all observations minus one to estimate all param-
eters. The remaining observation is then used to assess
the network quality in the class node [271].

Table 4.2: Augmented Naive Bayes approach: different quality measures

network while the latter only evaluate the network at the class node. As the
task of software fault prediction is in fact a classification task requiring the
prediction of a single class attribute, local quality measures would seem the
most preferable. In this study, a representative from both categories is used,
see Table 4.2. Both quality measures were combined with the five algorithms
defined above, resulting in ten different BN learners.

The implementation of Sacha has been used for both the Naive Bayes and
the Augmented Naive Bayes classifiers [271]. This implementation is available
as a set of Weka bindings which allows to execute the software directly from
within the Weka environment4.

4www.jbnc.sourceforge.net
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4.3.4 General Bayesian network classifiers

All previously discussed methods restrain the network structure G in order to
limit the search space of allowed DAGs. Omitting these restrictions, General
Bayesian Networks (GBN) can adopt any DAG as G. Selecting the optimal
structure is however known to be an NP-hard problem since the possible sets
of parents for each variable grow exponentially with the number of candidate
parents [60]. Several algorithms have been proposed to limit the computational
expense of finding a suitable network structure. Commonly, these algorithms
can be subdivided into two broad categories; i.e. those using a heuristic search
procedure (‘Search-and-Score algorithms’) and algorithms which employ statis-
tical tests to infer the conditional independence relationships amongst variables
(‘Constraint-Based algorithms’) [189].

K2

Several Search-and-Score algorithms have been proposed in the literature, e.g.
the Greedy Equivalence Search (GES) algorithm [59] and algorithms based on
the use of genetic operators [195]. In this study, the K2 algorithm of Cooper
and Herskovits which employs a greedy search procedure is investigated [65].
While greedy search can become trapped in local minima, it has been shown
that K2 yields comparable results to other Search-and-Score algorithms [338].

The K2 algorithm adopts a bottom-up search strategy assuming equal prior
probabilities for all possible network structures and considers all variables one by
one, assuming some ordering in the variables. For each variable x(i), the poste-
rior probability of the network structure where x(i) is conditionally independent
of all other variables is evaluated. Next, the parents whose addition increases
the posterior probability of the resulting network structure the most are sequen-
tially added. When no further parents that increase the posterior probability
of the network can be added, the algorithm traces back until all variables have
been considered. The K2 algorithm, available in the Weka workbench, is used
in this study [334].

MMHC

Opposite to the Search-and-Score paradigm is the use of statistical tests to
verify whether certain conditional independencies between variables hold. Ex-
amples are the PC algorithm [295] and the Three Phase Dependency Analysis
(TPDA) algorithm [58]. In our analysis, a hybrid combining the advantages of
Search-and-Score and Constraint-Based algorithms is considered; i.e. the Max-
Min Hill-Climbing (MMHC) algorithm proposed in [313]. Comparison with,
amongst others, GES, TPDA and PC empirically illustrated the strength of
this algorithm [313].

The MMHC algorithm first constructs the skeleton of a Bayesian network
(i.e. a network structure containing only undirected edges) by adopting a local
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discovery algorithm called Max-Min Parents and Children (MMPC) to deter-
mine the parent-children set (PC) of every node. MMPC proceeds by sequen-
tially adding nodes to a candidate PC set (CPC) as selected by a heuristic
procedure. The set may contain false positives, which are removed in a sec-
ond step. The algorithm tests whether any variable in CPC is conditionally
independent of the target variable, given a blocking set S ⊆ CPC. If such
variables are found, they are removed from CPC. As a measure of conditional
(in)dependence, the G2 measure, as described by Spirtes et al. [295], is used.
This measure is asymptotically following a χ2 distribution with appropriate de-
grees of freedom under the null hypothesis of conditional independence, which
allows to calculate a p-value indicating the probability of falsely rejecting this
null hypothesis. Conditional independence is assumed when the p-value is more
than the significance level α (α equals 0.15 in this study). Once the skeleton is
determined, the final network structure is learned using a greedy hill-climbing
search which is constrained to add only an edge if it was discovered by MMPC.
The BDeu score [136] is used to guide this greedy search. The network structure
is induced using the Causal Explorer package for Matlab5 while the Bayesian
Net Toolbox6 is used for inference afterwards.

4.3.5 Benchmark classifiers

As illustrated by Fig. 4.1, numerous techniques other than BN classifiers have
been used to construct software fault prediction models. As a reference, two
such techniques are included; i.e. random forest and logistic regression which
are both implemented in the Weka toolbox [334]. These techniques are selected
on the basis of illustrated performance in software fault prediction and other
domains [23,200], and were already discussed in Chapter 2.

4.3.6 Markov blanket feature selection

Learning from high dimensional data often poses considerable difficulties to
machine learning techniques due to the presence of irrelevant or redundant fea-
tures. Moreover, when considering more features, typically comparatively more
parameters need to be estimated which in turn induces additional uncertainty
in these estimations [301].

Previous work on mining static code features indicated that a single best set
of features does not exist, but instead depends on the specific data set [230]. As
a result, several software fault prediction studies consider the complete input
space and let the learner decide which features should be selected [200,317]. Such
approach is often feasible as most techniques include some sort of embedded
feature selection, or can be adjusted to this goal by e.g. including a penalty on
the size of the parameters [6]. This is however not the case for the Naive Bayes
classifier and some of the Augmented Naive Bayes Classifiers which thus also
include uninformative variables.

5www.dsl-lab.org/causal explorer
6www.code.google.com/p/bnt
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Figure 4.5: The Markov blanket of a clas-
sification node y

The use of a Markov blanket
based feature selection approach
provides a natural solution to this
issue. The Markov blanket (MB)
of a node y is the union of y’s par-
ents, y’s children and the parents of
y’s children and is the minimal vari-
able subset conditioned on which all
other variables are independent of y.
In other words, no other variables
than those contained in the MB of
y need to be observed to predict the value of y. The concept is illustrated in
Fig. 4.5 where the MB of y is indicated by the shaded area. For instance, the
value of x(6) can be ignored when predicting the value of y as it is the child of
a parent of y and thus is no part of the MB of y.

The HITON algorithm is used for the Markov blanket feature selection which
adopts the same test of conditional (in)dependence as the MMHC algorithm,
the G2 measure, and has been applied to the data sets at a significance level
of 5% and 15%, referred to as MB.05 and MB.15 respectively [7]. Note that
if attribute selection is performed, it is applied prior to training and testing
the classifiers. Hence, every classifier is applied three times to each data set.
The feature selection algorithm has been implemented in the Causal Explorer
package.

4.4 Empirical setup

4.4.1 Data sets

The data considered in this study stems from two independent sources; i.e. from
the NASA IV&V facility and the open source Eclipse Foundation. Both data
sources are in the public domain, enabling researchers to validate our findings.
Note that the set of static code features is not homogenous, including McCabe
complexity, Halstead, object oriented (OO) and lines of code (LOC) metrics,
depending on the origin of the data set. Notwithstanding this dissimilarity, the
purpose of both data collection efforts is to investigate the relationship between
static code features and software faults.

It should be noted that static code features are known to be correlated;
previous work examining the different static code features e.g. indicated that
these could be grouped into four categories [202]. A first category related to
metrics derived from flowgraphs (i.e. McCabe metrics) while a second category
contained metrics related to the size and item count of a program. The two other
categories represented different types of Halstead metrics. This again motivates
the use of a feature selection procedure, especially when applying techniques
that do not include some sort of embedded feature selection.
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NASA IV&V facility

The NASA data sets can be freely obtained directly from the NASA MDP
(Metrics Data Program) repository which is hosted at the NASA IV&V facility
website7 or from the Promise repository8. Recently, it was pointed out that
differences exist between the data from both sources, a topic to which we will
return in Chapter 5. In this study, eight data sets taken from the NASA MDP
repository have been preprocessed as detailed in Section 4.4.2 and studied. As
machine learning typically benefits from more data, only data sets with more
than 1,000 observations have been selected, see Table 4.3, top panel.

Table 4.4 provides an overview of all available features for each of the NASA
data sets included in this study and indicates how they relate to each other. As
noted earlier, such data can be mined directly from the source code using sev-
eral purpose-built tools. The tool selected for this task was McCabe IQ 7.1 and
has been used for all data sets, providing a common measurement framework.
The set of available static code features include LOC, Halstead and McCabe
complexity metrics. The first is arguably one of the widest used proxies for
software complexity in fault prediction studies and has been used as an approx-
imation of software size since the late sixties [94]. As LOC counts have been
recognized to be dependent on the selected programming language, a number
of alternative measures were introduced in the 70s to quantify software com-
plexity. Two such sets of metrics are McCabe complexity metrics and Halstead
software science metrics. The first maps a program or module to a flowchart
where each node corresponds to a block of code where the flow is sequential and
the arcs correspond to branches in the program. Software complexity is then
related to the number of linearly independent paths through a program. Hal-
stead metrics take a different perspective by considering a program or module
as a sequence of tokens, i.e. a sequence of operators and operands. Based on
the counts of these tokens, a number of derivative measures have been defined
which are sometimes referred to as ‘software science’ metrics [122]. Note that
the projects stemming from the NASA IV&V facility were mainly developed
using procedural programming, and typically only contain LOC, Halstead and
McCabe complexity metrics. For some projects, requirement metrics (projects
‘PC1’, ‘CM1’ and ‘JM1’) [155] and class level metrics (project ‘KC1’) [53] have
also been collected. These additional metrics have not been considered in this
study as these have not been collected on the same granularity level as the rest
of the data.

Eclipse foundation

The Eclipse platform project was founded in 2001 by IBM with the support
of a consortium of software vendors. In early 2004, the Eclipse Foundation

7www.mdp.ivv.nasa.gov
8www.promisedata.org
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was instated to support the growing Eclipse community which constitutes both
individuals and companies9. Data from three major releases (release 2.0, 2.1
and 3.0) have been collected by the University of Saarland on the granularity of
files and packages [345]. As fault prediction models built on a finer granularity
provide more information to developers, only file level data sets are considered
in this study. More information on the origin of the Eclipse data sets can be
found in Table 4.3, bottom panel.

Static code features have been collected using the built-in Java parser of
Eclipse; some features were only collected at a finer granularity (i.e. at the
granularity of methods or classes) and were thus aggregated taking the average,
total and maximum value of the metrics. Table 4.5 provides an overview of all
available features. These include LOC and McCabe complexity metrics as well
as counts on the use of object oriented constructs. The source code is matched
with 6 months of post release failure data from the Eclipse bug repository [345].

NASA Origin data set Project size # faulty modules / # modules

JM1 Real time project in C with eight
years of defect data associated

315
KSLOC

2,102 / 10,878 (19.32 %)

KC1 Storage management system for
ground data in C++ with five
years of defect data associated

43 KSLOC 325 / 2,107 (15.42 %)

MC1 Software developed in C & C++
for a combustion experiment on
the space shuttle

63 KLOC 68 / 4,625 (1.47 %)

PC1 Flight software from an earth or-
biting satellite in C which is no
longer operational

40 KLOC 76 / 1,059 (7.18 %)

PC2 Software of a dynamic simulator
for attitude control systems in C

26 KLOC 23 / 4,505 (0.51 %)

PC3 Flight software from an earth or-
biting satellite in C

40 KLOC 160 / 1,511 (10.59 %)

PC4 Flight software from an earth or-
biting satellite in C

36 KLOC 178 / 1,347 (13.21 %)

PC5 Software of safety enhancements of
a cockpit upgrade in C++

164 KLOC 503 / 15,414 (3.26 %)

Eclipse Origin data set Project size # faulty files / # files

Ecl2.0a The Eclipse platform 2.0 was re-
leased on 27th of June 2002

796.9
KLOC

975 / 6,729 (14.49 %)

Ecl2.1a The Eclipse platform 2.1 was re-
leased on 27th of March 2003

987.6
KLOC

854 / 7,888 (10.83 %)

Ecl3.0a The Eclipse platform 3.0 was re-
leased on 25th of June 2004

1,305.9
KLOC

1,568 / 10,593 (14.80 %)

Table 4.3: Overview of data sets: Origin

9www.eclipse.org
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Table 4.4: Overview of NASA data sets: Selection of attributes and their cal-
culation

Data sets Metrics Data Program (MDP) repository JM1 KC1 MC1 PC1 PC2 PC3 PC4 PC5

LOC based metrics Handle Calculation

LOC Total LOC X X X X X X X X
LOC Blank BLOC X X X X X X X
LOC Executable SLOC X X X X X X X X
LOC Comments CLOC X X X X X X X X
LOC Code and Comment C&SLOC X X X X X X X X
Number of Lines nl X X X X X X
Percent Comments % Comments CLOC+C&SLOC

SLOC+CLOC+C&SLOC X X X X X X

McCabe metrics Handle Calculation

Cyclomatic Complexity v(G) X X X X X X X X
Cyclomatic Density vd(G) X X X X X X
Decision Density dd(G) Cond C

Dec C X X X X
Design Complexity iv(G) X X X X X X X X
Design Density id(G) iv(G)

v(G) X X X X X X
Essential Complexity ev(G) X X X X X X X X
Essential Density ed(G) ev(G)−1

v(G)−1 X X X X X X
Global Data Complexity gdv(G) X X
Global Data Density gd(G) gdv(G)

v(G) X X
Norm Cyclomatic Compl Norm v(G) v(G)

nl X X X X X X
Maintenance Severity Maint Sev ev(G)

v(G) X X X X X X

Halstead metrics Handle Calculation

Num Operators N1 X X X X X X X X
Num Operands N2 X X X X X X X X
Num Uniq Operators n1 X X X X X X X X
Num Uniq Operands n2 X X X X X X X X
Length N N1 + N2 X X X X X X X X
Difficulty D n1×N2

2×n2
X X X X X X X X

Level L 1
D X X X X X X X X

Volume V N×log2(n1 + n2) X X X X X X X X
Programming Effort E D×V X X X X X X X X
Programming Time T E

18 X X X X X X X X
Error Estimate B V

3000 X X X X X X X X
Content I V

D X X X X X X X X

Miscellaneous metrics Handle Calculation

Branch Count Branch C X X X X X X X X
Call Pairs Call C X X X X X X
Condition Count Cond C X X X X X X
Decision Count Dec C X X X X X X
Edge Count Edge C X X X X X X
Node Count Node C X X X X X X
Parameter Count Parameter C X X X X X X
Multiple Condition Count Mul Cond C X X X X X X
Modified Condition CountMod Cond C X X X X X X

4.4.2 Data preprocessing

To enable a fair assessment of the learners discussed earlier, each of the the
eleven data sets are subjected to the following preprocessing procedure. Each
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Data sets Eclipse foundation

Method level metrics Handle Available aggregators

Fan out FOUT avg, max, total
Method lines of code MLOC avg, max, total
Nested block depth NBD avg, max, total
Number of parameters PAR avg, max, total
Cyclomatic complexity VG avg, max, total

Classes level metrics Handle Available aggregators

Number of fields NOF avg, max, total
Number of methods NOM avg, max, total
Number of static fields NSF avg, max, total
Number of static methods NSM avg, max, total

File level metrics Handle Available aggregators

Number of anonymous ACD value
type declarations

Number of interfaces NOI value
Number of classes NOT value
Total lines of code TLOC value

Table 4.5: Overview of Eclipse data sets: Selection of attributes

observation (software module or file) in the data sets consists of a unique ID,
several static code features and an error count. First, the data used to learn and
validate the models are selected and thus, the ID as well as attributes exhibiting
zero variance are discarded. Moreover, observations with a total line count of
zero are deemed logically incorrect and are removed. In case of the NASA data
sets, the error density is also removed. The error count is discretized into a
boolean value where 0 indicates that no errors were recorded for this software
module or file and 1 otherwise, in line with e.g. [200,230,315,317,320].

As some of the Bayesian learners are unable to cope with continuous features,
a discretized version of each data set was constructed using the algorithm of
Fayyad and Irani [93]. This supervised discretization algorithm uses entropy
to select subintervals that are as pure as possible with respect to the target
attribute. Most techniques use the discretized data sets; if a technique employs
the continuous data instead, it is labeled accordingly.

Finally, it should be noted that machine learning techniques typically per-
form better if more data to learn from are available. On the other hand, part
of the data needs to be put aside as an independent test set in order to provide
a realistic assessment of the performance. As can be seen from Table 4.3, the
smallest data set contains 1,059 observations, while the largest contains up to
15,414 observations. Each of the data sets is randomly partitioned into two
disjoint sets, i.e. a training and test set consisting of respectively 2/3 and 1/3
of the observations, using stratified sampling in order to preserve the class dis-
tribution. To account for a potential sampling bias, this partitioning procedure
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is repeated ten times. Please note that as a side benefit of the automated col-
lection of the static code features, the data sets are complete; i.e. there is no
need for missing value handling.

After performing these steps, the data sets are passed to the learners de-
scribed in Section 4.3 with and without first applying the Markov blanket fea-
ture selection procedure.

4.4.3 Classifier evaluation

The induced models are compared to each other in terms of classification per-
formance, Section 2.3.1, and comprehensibility, Section 2.3.1. Note that the
latter is often neglected during model selection, but is of critical importance
when building software fault prediction models in practice [95].

Classifier performance

Chapter 2 told us that a battery of classification performance measures have
been put forward, of which ROC analysis is an often considered member. More
specifically, Table 2.3 shows that about half of the most recent papers on soft-
ware fault prediction embraced the AUC for model evaluation; Eq. 2.24 al-
ready defined the AUC, drawing upon its equivalence to the Wilcoxon ranked
sum test. Let fl(s) be the probability density function of the scores s for the
classes l ∈ {0, 1}10, and Fl(s) the corresponding cumulative distribution func-
tion. Then, AUC can also be formulated as:

AUC =

∫ ∞

−∞
F0(s)f1(s)ds.

�� ��4.7

Although the AUC has been extensively used, it was pointed out that the
AUC is flawed as a measure of aggregated classification performance [125]. He
developed a performance measure based on the expected minimum misclassifi-
cation loss, whereby the misclassification costs are not exactly known but follow
a probability distribution. Assume that misclassifying a faulty instance as not
fault prone has a misclassification cost c0, whereas a fault free instance classified
as fault prone costs c1. Then, the expected minimum misclassification loss is
defined as:

L = E[b]

∫ 1

0

[cπ0(1− F0(T )) + (1− c)π1F1(T )]u(c)dc,
�� ��4.8

with π0 and π1 the prior probabilities for fault prone and not fault prone in-
stances respectively, and T the optimal threshold t for a given value of c. More-
over, a variable transformation for the cost parameters has been applied, imply-
ing b = c0 + c1 and c = c0/(c0 + c1). The probability distribution of c (the ratio

10Note that for notational convenience, it will be assumed that higher scores correspond to
fault free instances; if this is not the case, the scores need to be multiplied by minus one.
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of the costs) is given by u(c), and is assumed independent from the distribution
of b (the level of the costs) leading to the expected value of b, E[b], outside the
integral. Hand has shown that an AUC based ranking is equivalent to a ranking
based on the expected minimum misclassification loss, for an appropriate choice
of u(c). The problem is that the probability distribution implied by the AUC
measure varies with the empirical score distribution and thus with the classi-
fiers. However, beliefs on the likely values of c should depend on contextual
information, not on the used classification tools. Therefore, Hand proposes the
H-measure which takes a beta distribution with parameters α and β for u(c),
and is defined by:

H = 1−
∫ 1

0
[cπ0(1− F0(T )) + (1− c)π1F1(T )]uα,β(c)dc

π0

∫ π1

0
c · uα,β(c)dc + π1

∫ 1

π1
(1− c) · uα,β(c)dc

.
�� ��4.9

This is a normalized measure based on the expected minimum misclassifica-
tion loss, ranging from zero for a random classifier to one for a perfect classifier.
Hand gives a number of examples which clearly illustrate how the AUC implies
cost distributions which vary between classifiers [125].

Recently, an alternative and coherent interpretation of the AUC as a mea-
sure of aggregated classification performance was put forward by Flach et al.
[100], relaxing the assumption made by Hand of selecting the optimal threshold
T for a given value of c. More specifically, they showed that the AUC can be re-
formulated as being linearly related to expected misclassification loss by instead
of selecting this optimal threshold T , considering as many thresholds as there
are examples, taking a uniform distribution over the data points and setting the
threshold equal to the score of the selected instance, t = s(xi). In fact, recent
work connected the AUC with 0-1 loss, Brier score and other often used met-
rics via the concept of operating condition, to which we return upon proposing
an update to the benchmarking framework of Lessmann et al. in Section 5.3.
The H-measure on the other hand has the benefit of explicitly balancing the
losses arising from classifying fault prone as not fault prone instances against
the opposite type of misclassification, an aspect the AUC does not allow for.

In this study, the performance of the classification algorithms will be quan-
tified using both measures. The AUC will be reported to verify the results of
other studies and is shown to be less discriminative as the H-measure, support-
ing earlier findings in the literature [200, 231]. We also report the H-measure
and the impact of varying the parameters for the beta distribution underlying
the H-measure.

H-measure parameters
When no additional knowledge of the likely values of c is available, Hand pro-
poses to use a symmetric beta distribution with α = β = 2. As no specific
costs have been specified in the fault prediction literature, the H-measure will
be calculated with these default values. However, depending on the context, it
can be argued that misclassifying a faulty instance as non fault prone is more
serious than the opposite, e.g. when considering high risk software. On the
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other hand, e.g. in open source software development, the opposite is true: in
order to keep participants motivated, it is advised to release early and often and
thus the cost of missing defects is perhaps lower than the cost of delays due to
unnecessary testing [266]. It can be seen from Table 4.3 that the data obtained
from NASA relate to high risk projects while the Eclipse project is an example
of the latter.

In [153], the impact of different cost ratios using the MetaCost framework
of Domingos was investigated. Misclassification costs ranging from (c0, c1) =
(75, 1), i.e. risk averse, to (c0, c1) = (1, 75), i.e. delay averse, were selected. A
similar approach is followed in this study, allowing c0 (resp. c1) to take discrete
values from 1 to 75 while keeping the opposite misclassification cost equal to
one. As such, the robustness of the H-measure with respect to changes in the
software development context is investigated. The findings of this analysis are
reported in Section 4.5.

Classifier comprehensibility

As BN classifiers, with the exception of the Naive Bayes learner with kernel
density estimation, share the possibility to be represented as a combination of
a DAG and associated conditional probability tables, the discriminating aspect
lies in the complexity of the network structure and the number of entries in the
probability table. Furthermore, Section 2.3.1 argued that smaller, less complex
models are to be preferred. As such, the complexity of the network structure
of each algorithm with and without Markov blanket feature selection is quan-
tified by the number of nodes and arcs in the DAG. Note that Naive Bayes
and certain Augmented Naive Bayesian learners are unable to exclude variables
from the network structure and thus invariably contain as many nodes as there
are variables in the data set. The aggregated size of the probability table is
measured by the network dimensionality. This is defined as the number of pa-
rameters required to fully specify the joint probability distribution encoded by
the network and is calculated as:

DIM =
n∑

j=1

(rj − 1) · qj
�� ��4.10

with rj being the cardinality of variable x(j) and:

qj =
∏

x(j′)∈Πx(j)

rj′
�� ��4.11

with Πx(j)
the direct parent set for node x(j). Note that for Naive Bayes using

a kernel density estimate, the network dimensionality cannot be calculated in a
meaningful way and thus is excluded from this comparison.
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4.4.4 Statistical testing

The statistical testing framework of Dems̆ar is again adopted in analysing the
results of this study [77]. In a first step, the Friedman test, see Eq. 2.16, is
used to investigate whether classification performance is influenced by specific
factors. Two factors are of interest here; i.e. the type of (Bayesian Network)
classifier and the use of feature selection prior to model construction. Adopting
the notation of Section 2.3.3, k equals 3 and P equals 11×17 = 187 when
comparing the results without feature selection with those after applying MB.15
and MB.05. As the MB.05 feature selection procedure turned out to negatively
impact predictive performance, k = 17 and P = 11×2 = 22 when analyzing
the impact of classifiers. Upon rejection of the Friedman null hypothesis, an
appropriate post-hoc test is effected. As the goal is to compare the BN learners
amongst themselves and against the benchmark classifiers of Section 4.3.5, a
post-hoc Nemenyi test is applied which compares all treatments to each other
[246].

During the comprehensibility assessment, a post-hoc Bonferroni-Dunn test
[84] is adopted which compares all classifiers with the single best performing
classifier. This test is similar to the Nemenyi test but adjusts the confidence
level to control for family-wise testing. As explained before, only for a selection
of BN learners it is possible to calculate the network dimension in a meaningful
way and thus, k equals 14 and P equals 11 × 2 = 22 in this situation. The
Bonferroni-Dunn test has been discussed in Section 3.4.6.

4.5 Results and discussion

This section reports the results of the techniques discussed in Section 4.3. The
average performance (the shaded rows) and standard deviation of the ten inde-
pendent iterations in terms of AUC and H-measure taking β(2, 2) as distribution
parameters are presented in Tables 4.6 and 4.7, respectively. The upper panel
displays the results prior to Markov blanket feature selection while the bottom
panel shows the performance after Markov blanket (MB) feature selection at a
significance level of 15%. The last column of each table displays the Average
Rank (AR) of each technique. The best performing technique is reported in
bold and underlined. The AR of a technique that is not significantly different
from the best performing technique at 5% is tabulated in boldface font, while
results significantly different at 1% are displayed in italic script. Classifiers dif-
fering at the 5% level but not at the 1% level are displayed in normal script.
The Bonferroni-Dunn test is used during these assessments.

4.5.1 Empirical results

The results without MB feature selection and with MB.15 and MB.05 are first
compared to each other using a Friedman test. The outcome of this test indi-
cated that feature selection did have a significant impact on the results (p-value
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Table 4.6: Comparison of classifier performance: out-of-sample AUC perfor-
mance

Technique / Data set JM1 KC1 MC1 PC1 PC2 PC3 PC4 PC5 Ecl2.0a Ecl2.1a Ecl3.0a AR

Log. Regr. 0.71 0.79 0.81 0.78 0.70 0.79 0.89 0.95 0.80 0.74 0.76 9.00
using continuous data 0.010 0.018 0.073 0.046 0.126 0.037 0.020 0.011 0.007 0.010 0.007
RndFor 0.74 0.82 0.91 0.84 0.73 0.82 0.93 0.97 0.82 0.75 0.77 2.18
using continuous data 0.006 0.015 0.041 0.022 0.129 0.024 0.010 0.005 0.008 0.011 0.004
Naive Bayes 0.70 0.80 0.86 0.77 0.84 0.76 0.82 0.95 0.79 0.73 0.77 10.91

0.009 0.021 0.030 0.044 0.097 0.027 0.018 0.006 0.006 0.012 0.006
Naive Bayes kernel 0.69 0.80 0.81 0.77 0.81 0.77 0.79 0.95 0.80 0.74 0.76 12.18
using continuous data 0.010 0.020 0.057 0.038 0.129 0.044 0.018 0.008 0.006 0.012 0.006
TAN 0.71 0.79 0.88 0.81 0.83 0.79 0.89 0.97 0.80 0.74 0.75 7.18

0.009 0.014 0.035 0.041 0.099 0.028 0.007 0.005 0.012 0.015 0.006
FAN-SB 0.71 0.79 0.88 0.81 0.83 0.79 0.89 0.97 0.80 0.74 0.75 7.68 W

ith
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u
t
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ark

ov
B
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selection

0.009 0.014 0.035 0.041 0.099 0.028 0.007 0.005 0.012 0.015 0.006
FAN-LCV LO 0.71 0.79 0.88 0.81 0.83 0.79 0.89 0.97 0.80 0.74 0.75 7.64

0.009 0.014 0.043 0.041 0.099 0.028 0.007 0.005 0.012 0.015 0.006
SFAN-SB 0.71 0.79 0.88 0.81 0.83 0.79 0.89 0.97 0.80 0.74 0.75 6.95

0.009 0.014 0.036 0.041 0.099 0.028 0.007 0.005 0.012 0.015 0.006
SFAN-LCV LO 0.72 0.78 0.88 0.80 0.84 0.78 0.90 0.96 0.79 0.74 0.76 7.82

0.010 0.018 0.030 0.034 0.104 0.023 0.016 0.007 0.009 0.011 0.007
SFAND-SB 0.71 0.79 0.88 0.81 0.83 0.79 0.89 0.97 0.80 0.74 0.75 6.86

0.009 0.014 0.036 0.041 0.099 0.028 0.007 0.005 0.012 0.015 0.006
SFAND-LCV LO 0.72 0.78 0.88 0.80 0.84 0.78 0.90 0.96 0.79 0.74 0.76 7.50

0.010 0.018 0.030 0.034 0.104 0.023 0.016 0.007 0.009 0.011 0.007
STAN-SB 0.70 0.75 0.84 0.74 0.62 0.79 0.89 0.95 0.77 0.72 0.75 14.27

0.008 0.019 0.048 0.106 0.201 0.025 0.010 0.011 0.010 0.015 0.009
STAN-LCV LO 0.71 0.77 0.87 0.78 0.79 0.79 0.90 0.96 0.79 0.73 0.76 10.36

0.011 0.015 0.048 0.056 0.095 0.023 0.014 0.008 0.007 0.013 0.009
STAND-SB 0.71 0.79 0.88 0.81 0.83 0.79 0.89 0.97 0.80 0.74 0.75 6.59

0.009 0.014 0.036 0.041 0.099 0.028 0.007 0.005 0.012 0.015 0.006
STAND-LCV LO 0.72 0.78 0.88 0.80 0.83 0.78 0.90 0.96 0.79 0.74 0.76 8.41

0.010 0.018 0.030 0.034 0.101 0.023 0.016 0.007 0.009 0.011 0.007
K2 0.70 0.78 0.88 0.82 0.83 0.78 0.89 0.97 0.79 0.72 0.74 11.36

0.011 0.018 0.041 0.055 0.127 0.025 0.010 0.006 0.007 0.011 0.008
MMHC15 0.71 0.72 0.69 0.72 0.61 0.77 0.88 0.95 0.71 0.69 0.74 16.09

0.012 0.092 0.150 0.064 0.119 0.022 0.021 0.010 0.086 0.063 0.046

Log. Regr. 0.71 0.79 0.82 0.77 0.80 0.79 0.87 0.95 0.80 0.73 0.76 11.09
using continuous data 0.009 0.021 0.051 0.052 0.123 0.035 0.019 0.011 0.007 0.009 0.008
RndFor 0.74 0.80 0.92 0.81 0.66 0.78 0.89 0.97 0.82 0.73 0.77 5.82
using continuous data 0.007 0.021 0.047 0.037 0.129 0.053 0.036 0.003 0.007 0.016 0.006
Naive Bayes 0.70 0.79 0.87 0.77 0.82 0.79 0.85 0.95 0.79 0.73 0.76 9.91

0.008 0.020 0.035 0.045 0.096 0.022 0.014 0.006 0.006 0.014 0.005
Naive Bayes kernel 0.69 0.80 0.81 0.75 0.79 0.78 0.80 0.95 0.79 0.74 0.76 12.91
using continuous data 0.011 0.021 0.051 0.058 0.158 0.037 0.012 0.008 0.006 0.012 0.007
TAN 0.71 0.80 0.88 0.78 0.81 0.79 0.90 0.97 0.80 0.74 0.76 6.36

0.009 0.018 0.039 0.039 0.105 0.030 0.016 0.005 0.010 0.013 0.008
FAN-SB 0.71 0.80 0.88 0.78 0.81 0.79 0.90 0.97 0.80 0.74 0.76 6.14 W

ith
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0.009 0.018 0.039 0.039 0.105 0.030 0.016 0.005 0.010 0.013 0.008
FAN-LCV LO 0.71 0.80 0.88 0.78 0.81 0.79 0.90 0.97 0.80 0.74 0.76 6.27

0.009 0.018 0.039 0.038 0.105 0.030 0.016 0.005 0.010 0.013 0.008
SFAN-SB 0.71 0.80 0.88 0.78 0.81 0.79 0.90 0.97 0.80 0.74 0.76 7.14

0.009 0.018 0.040 0.040 0.105 0.030 0.016 0.005 0.010 0.013 0.008
SFAN-LCV LO 0.72 0.79 0.87 0.78 0.81 0.79 0.90 0.96 0.79 0.74 0.76 7.55

0.010 0.017 0.038 0.041 0.100 0.029 0.014 0.006 0.011 0.012 0.005
SFAND-SB 0.71 0.80 0.88 0.78 0.81 0.79 0.90 0.97 0.80 0.74 0.76 7.14

0.009 0.018 0.040 0.040 0.105 0.030 0.016 0.005 0.010 0.013 0.008
SFAND-LCV LO 0.72 0.79 0.87 0.78 0.81 0.79 0.90 0.96 0.79 0.74 0.76 7.73

0.010 0.017 0.038 0.041 0.100 0.029 0.014 0.006 0.011 0.012 0.005
STAN-SB 0.70 0.75 0.83 0.76 0.75 0.78 0.89 0.95 0.77 0.71 0.75 15.36

0.008 0.032 0.079 0.044 0.109 0.021 0.014 0.010 0.009 0.017 0.009
STAN-LCV LO 0.71 0.78 0.87 0.78 0.82 0.79 0.89 0.96 0.79 0.74 0.76 8.73

0.011 0.027 0.034 0.040 0.093 0.027 0.017 0.008 0.008 0.015 0.008
STAND-SB 0.71 0.80 0.88 0.78 0.81 0.79 0.90 0.97 0.80 0.74 0.76 7.32

0.009 0.018 0.040 0.040 0.105 0.030 0.016 0.005 0.010 0.013 0.008
STAND-LCV LO 0.72 0.79 0.87 0.78 0.81 0.79 0.90 0.96 0.79 0.74 0.76 7.91

0.010 0.017 0.038 0.041 0.098 0.029 0.014 0.006 0.011 0.012 0.005
K2 0.70 0.79 0.88 0.77 0.81 0.78 0.89 0.97 0.80 0.73 0.74 10.00

0.012 0.019 0.041 0.038 0.103 0.028 0.016 0.006 0.006 0.015 0.009
MMHC15 0.71 0.74 0.84 0.77 0.77 0.77 0.88 0.95 0.75 0.71 0.75 15.64

0.012 0.060 0.067 0.040 0.115 0.024 0.013 0.011 0.050 0.042 0.010
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Table 4.7: Comparison of classifier performance: out-of-sample H-measure per-
formance

Technique / Data set JM1 KC1 MC1 PC1 PC2 PC3 PC4 PC5 Ecl2.0a Ecl2.1a Ecl3.0a AR

Log. Regr. 0.113 0.193 0.197 0.115 0.022 0.124 0.367 0.270 0.183 0.094 0.126 5.09
using continuous data 0.0129 0.0273 0.1079 0.0555 0.0452 0.0468 0.0453 0.0235 0.0076 0.0129 0.0095
RndFor 0.136 0.202 0.379 0.233 0.007 0.171 0.430 0.380 0.220 0.088 0.154 2.45
using continuous data 0.0099 0.0365 0.0881 0.0609 0.0079 0.0334 0.0431 0.0344 0.0141 0.0076 0.0109
Naive Bayes 0.093 0.159 0.198 0.108 0.010 0.082 0.205 0.157 0.162 0.093 0.134 10.73

0.0090 0.0315 0.0980 0.0573 0.0087 0.0246 0.0224 0.0111 0.0142 0.0118 0.0087
Naive Bayes kernel 0.087 0.163 0.010 0.098 0.023 0.104 0.149 0.217 0.164 0.087 0.120 10.36
using continuous data 0.0089 0.0323 0.0050 0.0544 0.0228 0.0363 0.0416 0.0249 0.0132 0.0115 0.0067
TAN 0.098 0.151 0.235 0.124 0.010 0.097 0.289 0.280 0.170 0.087 0.119 7.45

0.0072 0.0203 0.0789 0.0467 0.0145 0.0317 0.0178 0.0170 0.0230 0.0113 0.0087
FAN-SB 0.098 0.151 0.235 0.124 0.010 0.096 0.289 0.280 0.170 0.087 0.119 8.23 W

ith
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0.0072 0.0203 0.0789 0.0466 0.0143 0.0314 0.0178 0.0170 0.0230 0.0113 0.0087
FAN-LCV LO 0.098 0.151 0.235 0.124 0.010 0.097 0.289 0.280 0.170 0.087 0.119 7.82

0.0072 0.0203 0.0788 0.0467 0.0145 0.0317 0.0178 0.0170 0.0230 0.0113 0.0087
SFAN-SB 0.098 0.151 0.235 0.124 0.010 0.097 0.289 0.280 0.170 0.087 0.119 7.95

0.0072 0.0205 0.0790 0.0467 0.0143 0.0315 0.0178 0.0177 0.0228 0.0115 0.0086
SFAN-LCV LO 0.104 0.144 0.247 0.117 0.015 0.081 0.306 0.277 0.161 0.088 0.117 8.45

0.0102 0.0286 0.0862 0.0545 0.0225 0.0188 0.0435 0.0306 0.0130 0.0167 0.0103
SFAND-SB 0.098 0.151 0.235 0.125 0.010 0.096 0.289 0.280 0.170 0.087 0.119 8.05

0.0072 0.0205 0.0790 0.0474 0.0143 0.0312 0.0178 0.0177 0.0228 0.0115 0.0086
SFAND-LCV LO 0.104 0.144 0.247 0.117 0.015 0.081 0.306 0.277 0.161 0.088 0.117 8.50

0.0102 0.0286 0.0862 0.0545 0.0225 0.0188 0.0435 0.0306 0.0130 0.0167 0.0103
STAN-SB 0.092 0.127 0.238 0.064 0.010 0.093 0.282 0.222 0.136 0.071 0.108 13.36

0.0067 0.0243 0.0869 0.0353 0.0204 0.0282 0.0259 0.0270 0.0153 0.0104 0.0104
STAN-LCV LO 0.101 0.153 0.231 0.099 0.005 0.092 0.301 0.271 0.157 0.080 0.115 11.45

0.0076 0.0267 0.0838 0.0390 0.0045 0.0207 0.0326 0.0323 0.0192 0.0108 0.0073
STAND-SB 0.098 0.151 0.235 0.125 0.010 0.097 0.289 0.280 0.170 0.087 0.119 7.50

0.0072 0.0205 0.0790 0.0474 0.0145 0.0315 0.0178 0.0177 0.0228 0.0115 0.0086
STAND-LCV LO 0.104 0.144 0.247 0.118 0.010 0.081 0.305 0.277 0.161 0.088 0.117 9.32

0.0102 0.0286 0.0862 0.0536 0.0120 0.0188 0.0406 0.0306 0.0130 0.0167 0.0103
K2 0.093 0.150 0.264 0.125 0.013 0.084 0.275 0.308 0.158 0.072 0.104 9.82

0.0090 0.0320 0.0832 0.0590 0.0188 0.0346 0.0314 0.0145 0.0139 0.0105 0.0057
MMHC15 0.090 0.086 0.049 0.081 0.000 0.066 0.270 0.217 0.093 0.057 0.097 16.45

0.0100 0.0441 0.0807 0.0515 0.0003 0.0119 0.0449 0.0275 0.0546 0.0267 0.0259

Log. Regr. 0.111 0.180 0.114 0.118 0.023 0.112 0.282 0.269 0.180 0.093 0.127 5.36
using continuous data 0.0121 0.0425 0.1300 0.0604 0.0490 0.0294 0.0689 0.0238 0.0123 0.0110 0.0091
RndFor 0.133 0.181 0.397 0.220 0.016 0.113 0.304 0.380 0.220 0.070 0.147 2.55
using continuous data 0.0102 0.0439 0.0879 0.0577 0.0386 0.0450 0.0840 0.0377 0.0173 0.0112 0.0101
Naive Bayes 0.093 0.160 0.236 0.087 0.007 0.084 0.247 0.160 0.167 0.090 0.131 8.64

0.0088 0.0354 0.0730 0.0427 0.0056 0.0162 0.0321 0.0123 0.0161 0.0105 0.0067
Naive Bayes kernel 0.087 0.162 0.029 0.103 0.029 0.106 0.167 0.217 0.170 0.080 0.121 10.36
using continuous data 0.0090 0.0304 0.0207 0.0576 0.0397 0.0318 0.0449 0.0248 0.0165 0.0117 0.0050
TAN 0.097 0.164 0.235 0.096 0.006 0.079 0.290 0.277 0.172 0.089 0.122 7.05

0.0098 0.0289 0.0875 0.0431 0.0048 0.0213 0.0317 0.0202 0.0210 0.0134 0.0100
FAN-SB 0.097 0.164 0.235 0.096 0.006 0.079 0.290 0.277 0.172 0.089 0.122 6.95 W
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0.0098 0.0289 0.0875 0.0431 0.0048 0.0213 0.0318 0.0202 0.0210 0.0134 0.0100
FAN-LCV LO 0.097 0.164 0.235 0.096 0.006 0.079 0.291 0.277 0.172 0.089 0.122 6.77

0.0098 0.0289 0.0875 0.0431 0.0048 0.0213 0.0312 0.0202 0.0210 0.0134 0.0100
SFAN-SB 0.097 0.164 0.231 0.096 0.006 0.079 0.290 0.278 0.172 0.089 0.122 6.95

0.0098 0.0290 0.0929 0.0435 0.0048 0.0213 0.0318 0.0200 0.0209 0.0136 0.0099
SFAN-LCV LO 0.104 0.149 0.218 0.090 0.006 0.081 0.289 0.277 0.159 0.085 0.118 9.82

0.0104 0.0337 0.0806 0.0425 0.0049 0.0208 0.0317 0.0302 0.0162 0.0154 0.0106
SFAND-SB 0.097 0.164 0.231 0.096 0.006 0.079 0.290 0.278 0.172 0.089 0.122 6.95

0.0098 0.0290 0.0929 0.0435 0.0048 0.0213 0.0318 0.0200 0.0209 0.0136 0.0099
SFAND-LCV LO 0.104 0.149 0.218 0.090 0.006 0.081 0.289 0.277 0.159 0.085 0.118 9.91

0.0104 0.0337 0.0806 0.0425 0.0049 0.0208 0.0317 0.0302 0.0162 0.0154 0.0106
STAN-SB 0.092 0.128 0.201 0.086 0.004 0.070 0.282 0.222 0.138 0.072 0.109 15.27

0.0077 0.0251 0.0956 0.0478 0.0054 0.0157 0.0336 0.0274 0.0168 0.0134 0.0100
STAN-LCV LO 0.101 0.149 0.221 0.095 0.006 0.080 0.287 0.273 0.154 0.084 0.117 11.73

0.0082 0.0370 0.0645 0.0430 0.0048 0.0192 0.0297 0.0306 0.0202 0.0142 0.0069
STAND-SB 0.097 0.164 0.231 0.096 0.006 0.079 0.290 0.278 0.172 0.089 0.122 7.05

0.0098 0.0290 0.0929 0.0435 0.0048 0.0213 0.0317 0.0200 0.0209 0.0136 0.0099
STAND-LCV LO 0.104 0.149 0.218 0.088 0.006 0.081 0.289 0.277 0.159 0.085 0.118 10.27

0.0104 0.0337 0.0806 0.0445 0.0049 0.0208 0.0320 0.0302 0.0163 0.0154 0.0106
K2 0.093 0.160 0.225 0.093 0.006 0.074 0.288 0.308 0.158 0.077 0.108 11.09

0.0101 0.0321 0.0726 0.0445 0.0051 0.0173 0.0293 0.0143 0.0145 0.0109 0.0107
MMHC15 0.090 0.100 0.189 0.087 0.005 0.070 0.267 0.206 0.118 0.063 0.105 16.27

0.0100 0.0252 0.0984 0.0355 0.0051 0.0132 0.0206 0.0266 0.0373 0.0211 0.0090
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of 1.025×10−4 in case of AUC and smaller than 10−10 in case of the H-measure).
Using the post-hoc Bonferroni-Dunn test to compare the results without input
selection with those obtained by performing the MB feature selection proce-
dure prior to model construction, it was found that MB.15 did not result in
significantly lower performance; MB.05 did however result in significantly worse
performing models. Hence, the results of MB.05 are omitted in the remainder
of this discussion.

Software fault prediction techniques
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Figure 4.6: Ranking of software fault pre-
diction models for the AUC and H-measure
with β(2, 2) using the post-hoc Nemenyi test
in the top and bottom panel respectively

All software fault prediction
techniques are compared by first
applying a Friedman test, fol-
lowed by a post-hoc Nemenyi
test, as explained in Section 4.4.4.
The Friedman test resulted in a p-
value smaller than 10−10 for both
AUC and the H-measure. The
null hypothesis of equal perfor-
mance amongst all techniques is
thus strongly rejected and in a
next step, the post-hoc Nemenyi
test assessing all pairwise differ-
ences between techniques is per-
formed. The outcome of this test
is given in Fig. 4.6. The hori-
zontal axis in these figures corre-
sponds to the average rank (AR)
of a technique across all data sets.
The techniques are represented
by a horizontal line; the more
this line is situated to the left,
the better performing a technique
is. The left end of this line de-
picts the AR while the length of
the line corresponds to the crit-
ical distance for a difference be-
tween any two techniques to be
significant at the 1% significance
level. In case of 17 techniques and
11 data sets, this critical distance
equals 5.959. The first set of dotted and full vertical lines in the figure indicates
the critical difference at respectively the 5% and 1% significance level with the
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overall best performing technique. The second set of vertical lines, displayed
in bold, represents the differences with the best performing Bayesian Network
learner. A technique is significantly outperformed if located at the right side of
the vertical line.

Recently, an alternative to the AUC as a measure of aggregated classification
performance was proposed, allowing to specify a probability distribution over
the misclassification losses: the H-measure. The results of both metrics exhibit
a similar pattern as random forest (RndFor) is found to be the overall best
performing technique, both in terms of the AUC and H-measure, confirming
a.o. the work of Lessmann et al. [200] and Guo et al. [118]. Furthermore, one
can observe a similar ranking across techniques, indicating the same techniques
as worst performing. One notable exception is logistic regression (Log. Reg.); in
terms of AUC, this technique is found to be outperformed by RndFor at the 1%
significance level while for the H-measure, Log. Reg. ranks second. This can
partially be explained by the leveling out effect observed for AUC; i.e. several
Augmented Naive Bayesian learners perform similarly in terms of AUC and are
thus attributed a similar ranking. Log. Reg., which performs slightly worse in
terms of AUC than these learners is thus ranked much lower. The fact that the
rankings are similar when no additional information on misclassification costs
is included in the H-measure is interesting.

Interestingly, when considering the AUC metric, most of the BN learners
are not significantly outperformed at the 1% significance level by RndFor, see
Fig. 4.6, top panel. However, unlike the conclusions of Lessmann et al. [200],
who only considered the AUC, it is found that the Naive Bayes learner, which
is often used in software fault prediction research, is outperformed at the 1%
significance level. Similar results can be found when focussing on the H-measure;
giving more discriminative results, the Naive Bayes learner as well as a number
of augmented Naive Bayes classifiers are found to be significantly outperformed
at the 1% level. As such, other BN learners which provide a more informative
network structure can indeed be regarded as a valid alternative to Naive Bayes.
Considering BN learners only, Tree Augmented Naive Bayes (TAN) was found
to be the best performing classifier, while STAN-SB and MMHC15 are found to
perform significantly worse than TAN at the 1% level, both in case of the AUC
and the H-measure. Especially the fact that MMHC15 scores last is noteworthy,
as this BN learner allows to construct any possible DAG as network structure.
This can be explained by the fact that MMHC15 uses conditional independence
tests to determine the network structure; even small amounts of noise in the
data set can lead to incorrect conclusions reached by such tests [277].

As explained in Section 4.4.3, the H-measure relies on a beta distribution
characterized by two parameters which determine the likelihood of different cost
ratios. It can be argued that this cost ratio is in fact context specific, and dis-
tribution parameters reflecting different cost ratios should be considered [153].
Parameter settings reflecting a different development context have thus been
adopted, investigating the robustness of the H-measure in the context of soft-
ware fault prediction. The outcome is presented in Fig. 4.7. The horizontal axis
of this figure represents the expected value of the cost ratio while the vertical

146



A
ve

ra
ge

 R
an

ks

Costs

1

75

1

50

1

25
1 25 50 75

 

 

Log. Regr.
RndFor
Naive Bayes
TAN
STAN−SB

Figure 4.7: Robustness of the H-measure

axis corresponds to the average ranks (AR). Techniques are represented by a
line; if a technique does not perform statistically worse than the best performing
technique at the 5% significance level, a full line is used and a dotted line oth-
erwise. Bonferroni-Dunn tests are used in assessing the techniques at each cost
ratio. Note that to improve readability, only a selection of techniques is shown,
combining the best techniques both from a comprehensibility and performance
point of view. It can be seen that RndFor remains the overall best perform-
ing technique when the cost ratio is larger than one, which corresponds to a
risk averse development context. When considering a delay averse context how-
ever, very different conclusions can be reached. In such a context, Augmented
Bayesian Network classifiers are found to be best performing. A cost ratio of one
seems to be pivotal in this respect. One possible explanation to these findings
lies in the fact that BN learners are known to be biased, exhibiting a tendency
towards overconfidence in their predictions [128]. This reaffirms earlier conclu-
sions concerning the importance of taking development context into account in
software fault prediction [153,154].

Markov blanket feature selection

It is known that several static code features are correlated and e.g. principal
component analysis or factor analysis has previously been used to reduce the
number of features [169, 202, 315]. A possible downside of such approach is a
decrease in comprehensibility as several static code features are aggregated into
a single feature. An alternative explored by e.g. Menzies et al. in the context of
the NASA data sets is the use of a filter approach to select the most informative
subset of features prior to model construction [230]. Catal et al. also considered
a filter approach and compared it to directly discarding aggregated features such

147



as derived Halstead measures [53]. Both confirmed the possibility of selecting a
set of most informative features from the data without incurring a performance
penalty. In the first study, the authors were able to build fault prediction
models based on three features, while the filter employed in the more recent
study of Catal et al. selected between three and eight metrics prior to model
construction. The MB feature selection procedure of this study can be regarded
as an example of a filter approach. It was in some cases able to select as little as
five attributes; however, on some data sets the MB included up to 23 features.
The MB.05 filter effectively further reduced the number of selected features, but
resulted in lowered performance. Menzies et al. reported Halstead and LOC
based metrics to be the most often selected features11. Fig. 4.8 reports our
findings hereon; the bar chart depicts the average number of attributes selected
by the MB.15 procedure per data set and per group of static code features.
It can be seen that in case of the NASA data sets, Halstead and LOC based
metrics are most often selected by the MB.15 filter. A notable exception is
the PC5 data set, for which McCabe complexity metrics were found to be the
second most important group. Remark that this last data set was not included
in their study. The Eclipse data sets, containing an alternative set of static code
features, provide another picture as method level attributes are prevalent. In all
three Eclipse data sets, metrics collected at different granularity were selected.
Investigation at the level of individual attributes reveals significant differences
in selected features between data sets. This supports the findings of Menzies
et al. who concluded that ‘The best attributes to use for defect prediction
vary from data set to data set’. Finally, it can be argued that depending on

11Note that our selection of data sets is not identical to Menzies’ study and that minor
differences exist in the grouping of static code features, see Table 4.4. E.g. ‘Percent comments’
was regarded as a LOC based static code feature, in line with the documentation of the NASA
MDP.
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the data, other feature selection techniques seem more effective than the MB
procedure. This can in part be explained by the requirement to discretize the
data when considering BN learners. Note that RndFor and some of the BN
learners explored in this study also include embedded feature selection, the
impact of which is further discussed in the next section.

4.5.2 Comprehensibility of the Bayesian networks
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Figure 4.9: Comparison of Bayesian net-
works: comprehensibility

Several characteristics constitute
a good software fault prediction
model, of which performance is
only one element. Model com-
prehensibility is also important,
especially if such a model would
be deployed in a real life setting
[95]. As argued by e.g. Kot-
siantis [189], BN classifiers are
amongst the most comprehensi-
ble classifiers, but their compre-
hensibility can be hampered by
the complexity of the network
structure. Fig. 4.9 reports on this
aspect by plotting the number of
nodes, arcs and the network di-
mensionality of each BN learner,
both with and without prior ap-
plication of the MB feature selec-
tion procedure. Techniques are
ordered according to their clas-
sification performance using the
H-measure; a technique situated
above the dotted line was not
found to be significantly outper-
formed at the 5% level by Rnd-
For, the best performing learner.

The graphs illustrate the im-
pact of MB feature selection on
network complexity by reducing
the number of nodes and arcs
in the network and lowering the
number of parameters to be es-
timated, or network dimension.
Similar to the performance as-
sessment, a Friedman test is first
carried out to establish whether
differences observed in the net-
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work dimension are significant. As the null hypothesis of no significant differ-
ences is strongly rejected with a p-value smaller than 10−10, a Bonferroni-Dunn
test is performed comparing the best BN learner to all others. The results are
depicted in Fig. 4.10 and indicate that Selective Tree Augmented Naive Bayes
using the Standard Bayesian quality measure, STAN-SB, is the BN learner asso-
ciated with the lowest network dimension. As such, one can argue that models
induced by this learner are the simplest and most comprehensible. Naive Bayes,
MMHC15 and several Augmented Naive Bayes learners using the Local Leave-
One-out Cross Validation quality measure to assess network fitness are found to
be not significantly more complex. Taking however into account the fact that
STAN-SB is outperformed by the best performing Bayesian learner, TAN, it can
be argued that the use of a local quality measure is arguably better than using
the Standard Bayesian quality measure as it results in similar performance to
TAN while resulting in networks which are not significantly more complex than
STAN-SB. More general, one can observe that the Augmented Naive Bayes clas-
sifiers, which provide a relaxation to the TAN assumption, are able to reduce
the number of nodes and arcs compared to TAN, without a loss in predictive
power.
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Figure 4.10: Ranking of software fault pre-
diction models for the network dimension
using the Bonferroni-Dunn test

General Bayesian Networks
which are able to adopt any
DAG as network structure, are
found to be less appealing.
MMHC15, which performed sig-
nificantly worse than other BN
learners, typically constructs very
simple networks. These networks
are often even overly simple, con-
taining only a very limited set of
features (nodes). The other Gen-
eral Bayesian Network learner,
K2, performed much better but
at the expense of very complex
network structures12.

When selecting the optimal
learner to construct software fault
prediction models, a tradeoff is
typically made between model
comprehensibility and classifica-
tion performance. It should be noted that the techniques found to result in
the most comprehensible models are also found to be outperformed by random
forest. Hence, it can be argued that when gaining insight into what drives soft-
ware faults is of key importance, BN classifiers offer considerable advantages to
other, more opaque models. More specifically, the NB learner as well as several

12The K2 algorithm allows to limit the number of parents for each node but as the objective
was to test this algorithm as a GBN, this restriction was not imposed.
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Figure 4.11: Bayesian network learned by the Augmented Naive Bayes classifier
‘STAND LCV LO’ without MB feature selection on the PC1 data set

Augmented Bayesian Learners using the LOO-CV quality criterion during net-
work construction are to be recommended. An important note in this respect
is that Naive Bayes is typically easy to implement and can be written as a sum
of logs to obtain a linear model [128, 315]. However, this learner is unable to
discard uninformative attributes which can prove important in gaining further
insight into fault prediction. On the other hand, when classification performance
is crucial, other techniques such as random forest would seem more appropriate.
As discussed in the previous section however, the question of which technique
induces the most appropriate model depends on the development context.

As an example, Fig. 4.11 shows the network for the PC1 data set learned
by the STAND LCV LO classifier (without prior input selection), a technique
not found to be outperformed by the best Bayesian learner while typically not
resulting in significantly more complex networks than STAN-SB. As one can
observe, the algorithm was able to make accurate predictions retaining only five
features. When interpreting the network, it is important to realize that the ex-
istence of an arc not necessarily implies causality, but rather should be seen as
(conditional) dependence between the variables. In this network, the presence
of software faults is directly governed by CLOC (number of commentary lines),
I (Halstead content) and the normalized cyclomatic complexity. Further cor-
relations between e.g. I and the number of unique operands can be discerned,
which is plausible when considering that the latter serves as input to calculate
the first. The relations present in the network can be helpful when for instance
issuing guidelines on software complexity to programmers.

4.6 Conclusion

Time and cost effective software development are decisive for today’s developers
and since the pioneering work from the 70s, several avenues to tackle problems
related hereto have been investigated. Software fault prediction can be regarded
as one piece of the solution to these issues. It is argued by Lessmann et al. that
fault prediction techniques should not be judged on their predictive performance
alone, but that other aspects such as computational efficiency, ease of use, and
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especially comprehensibility should also be paid attention to [200].
This chapter tries to answer this call by comparing 15 Bayesian network

learners, both in terms of the Area Under the ROC Curve (AUC) and the
recently introduced H-measure. The results of the experiments show that Aug-
mented Naive Bayes classifiers can yield similar or better performance than the
commonly used Naive Bayes classifier. This additional performance however
comes at the expense of more complex models. Considering comprehensible
models only, Augmented Naive Bayes classifiers using the Local Leave-One-out
Cross Validation quality measure are to be recommended. The Naive Bayes
classifier, which can be turned into a linear model is also a valid alternative,
despite its simple network structure. General Bayesian Networks were found
to be either outperformed by other Bayesian learners, or to result in overly
complex network structures. It can be argued that networks which focus on a
smaller set of highly predictive features provide practitioners the means to gain
insights more easily into the drivers of software faults and to further capitalize
hereon, the use of Markov blanket (MB) feature selection was also tested. The
outcome indicates that MB is able to reduce the number of variables while not
negatively impacting performance. However, other feature selection approaches
are possibly able to select an even smaller set of highly predictive features.

Depending on the development context, and the associated costs of misclas-
sifying a (non) faulty instance, other more opaque models are found to be more
discriminative. Our findings support earlier results identifying the random for-
est learner as the most appropriate to model the presence of faults if the cost
of not detecting them outweighs the additional testing effort. In the opposite
situation, Augmented Bayesian Network classifiers are found to be the better
choice. The question how other techniques such as support vector machines or
neural networks perform under these circumstances remains to be explored.

Recently, several researchers turned their attention to another topic of in-
terest; i.e. the inclusion of information other than static code features into fault
prediction models such as information on inter module relations [316] and re-
quirement metrics [155]. The relation to the more commonly used static code
features remains however unclear. Using e.g. Bayesian network learners, im-
portant insights into these different information sources could be gained which
is left as a topic for future research.
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Someone told me that each equa-
tion I included in the book would
halve the sales.

Stephen Hawking, 1988 5
Revisiting earlier results: the NASA

MDP case

Empirical software engineering has greatly benefited from the sharing of data
through public repositories such as the Promise website and the NASA Metrics
Data Program (MDP). This dependency on public data offers both great opportu-
nities and poses serious threats; taking public data sources for granted, one may
be encouraged to formulate and test hypotheses on ill understood data. As sign-
posted earlier, data collection and preprocessing are however not to be regarded
as subordinate steps in the KDD process, but in fact should form the cornerstone
of any meaningful analysis. This chapter explores a recent critique of Gray et
al. on the validity of the NASA MDP data, revisiting the study of Lessmann et
al., while also proposing an update to their well-established benchmarking frame-
work. We verify that different data set cleaning procedures have significant im-
pacts upon experimental results, but believe this should not overshadow previous
findings in the literature. In order to develop our understanding of, and confi-
dence in, competing defect prediction systems, experimenters are encouraged to
be more systematic and transparent in their data set preprocessing.

This chapter is based on the following manuscript

- Karel Dejaeger, Stefan Lessmann, Martin Shepperd and Bart Baesens, “Bench-
marking Classification Models for Software Defect Prediction: Revisiting Earlier
Results,” IEEE Transactions on Software Engineering, In submission.

5.1 Introduction

As mentioned in the previous chapter, developing high-quality software systems
is a complex and usually very expensive process in which software verification
and validation is a critical step, and in spite of the attention it received over
the years, it remains a largely human-centric process that relies on observing a
sample of executions. This is even more true with object oriented software, in
which concepts like encapsulation and inheritance tend to introduce new risks
and increase the need and complexity of testing [33].

Typically, defect prediction models are used to estimate the likelihood of
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code segments or modules containing defects based on a set of static code char-
acteristics or change data and been successfully put to the test in many software
companies. Evidence on this can be found in the many industry case studies
[251, 310]. For instance, a case study by Khoshgoftaar et al. [173] in a large
legacy telecommunication system indicated a strong positive return on invest-
ment when adopting defect prediction models compared to a random selection
of test candidates. A similar conclusion was reached by Arisholm et al. [12] who
investigated a middleware system of a large telco operator, reporting that using
a prediction model to focus verification efforts could result in a cost saving of
about 29%.

Chapter 1 already elaborated upon the research activity instilled by the po-
tential value of accurate defect prediction. To facilitate this line of research, a
number of public data repositories have been created containing data from vari-
ous software development projects; popular examples include the NASA Metrics
Data Program (MDP) repository and the Promise repository [288]. Having pub-
lic data repositories enhances the current state of software engineering research
by offering the possibility to reproduce studies, refining or validating earlier
findings [232]. For a detailed evaluation of current research see the two recent
systematic reviews by Catal et al. [54] and Hall et al. [121].

It is important to appreciate that the application of machine learning algo-
rithms is only one particular step in the knowledge discovery process presented
in Section 2.4 and that data quality and data cleaning or preprocessing also
plays a crucial role [72]. Poor data quality can have a detrimental effect on
the findings of a study and in light of this observation, the availability of pub-
lic data repositories both pose great opportunities and threats to researchers.
The widespread use of the NASA data sets is striking. For instance, Catal et
al. [54] found that public data sets mostly originate from Promise and NASA
MDP repositories, while Hall et al. [121], from a total of 208 defect prediction
studies, identified 58 primary studies that used NASA data sets, or more than
25%.

Recently, doubts have been cast on the quality of these data sets by Gray
et al. [117], leading them to conclude that the “bulk of defect prediction exper-
iments based on the NASA Metrics Data Program data sets may have led to
erroneous findings”. Responding to their call to repeat studies that might be
affected by these data quality issues, we reevaluate the findings of Lessmann et
al. [200]. We choose this study for four reasons. One, it covers an extensive (22)
set of different learning algorithms. Two, it is based upon a rigorous statistical
methodology using a Friedman repeated measures design coupled with Nemenyi
post-hoc testing as recommended by Dems̆ar [77]. Three, it is published in the
community’s flagship journal. Lastly, repeatability is facilitated by virtue of the
assistance of two authors of the original study.

A second, and related, theme that arises is the finding that the performance
of many machine learning algorithms are statistically indistinguishable. This has
inspired new research directions, e.g., towards optimization of defect prediction
models on goals other than classification performance [231].

Therefore our study seeks to answer two questions. First, what is the impact
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of the reported data quality problems on previously published defect prediction
studies that have been based, at least in part, upon the NASA defect data sets?
Second, can we identify statistical procedures that better distinguish between
the prediction performance of these competing defect classification models?

The remainder of this chapter is structured as follows.
Section 5.2 outlines the data quality issues present in the NASA data sets and
details the preprocessing procedure for addressing these issues.
Section 5.3 explains the empirical setup and the updated benchmarking frame-
work.
Section 5.4 discusses the findings of this study.
Section 5.5 summarizes our findings and offers a discussion on their implications.

5.2 Data quality in the NASA data sets

As indicated, the motivation for this study lies in the recent work of Gray et
al., which signaled several data quality issues with the NASA data sets which
could potentially invalidate earlier findings [117]. As these data sets have been
frequently used for defect prediction, the importance of thoroughly investigating
these issues and quantifying their impact cannot be overstated. Table 5.1 pro-
vides an overview of the usage of the NASA data sets; for brevity, only studies
published in journals identified as most influential to defect prediction research
are included.

From this overview, it is clear that multiple versions of the same data sets
exist; this is true for the CM1, JM1, KC1 and PC1 data sets. Moreover, the JM1
data set hosted on the Promise repository1 contains 5 observations with missing
values on 5 attributes. Menzies et al. [230] seemed to have used yet another
version of these data sets, containing one additional observation compared to
other studies. Remarkably, the majority of defect prediction studies did not
consider these differences, directly using data obtained from either the MDP
or Promise repository. Even more surprising, there are also differences in the
collection of data sets offered by both repositories; KC2 is not hosted on the
NASA MDP repository while, until 16 November 2011, the KC4 data set was
unavailable on the Promise repository. While it should be noted that the NASA
MDP repository was recently taken off-line, parallel versions of the same data
sets are still in circulation2.

Gray et al. [117] outlined a second problematic issue, namely the large num-
ber of repeated data points, resulting in the repetition of training observations
in test and validation sets. It has been argued that when tuning a learner to-
wards the specific characteristics of a data set using a validation set containing
duplicates, learners are prone to over-fitting [187]. Duplicates in the test set
on the other hand can result in overly optimistic performance estimates [334].

1Note the Promise repository hosts a version of the NASA data sets,
http://promisedata.org.

2See for example http://nasa-softwaredefectdatasets.wikispaces.com.
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Furthermore, the validity of specific data values such as non-integer values for
counts such as LOC was also questioned, a problem present in the CM1, JM1,
KC1 and PC1 data sets hosted on the Promise repository. Additionally, Gray
et al. indicated issues pertaining to missing values, inconsistent observations
(i.e. observations with an identical attribute vector, but different class labels),
and data integrity. The latter issue can be tackled by imposing domain specific
constraints on the data, taking into account the correlated nature of certain
attributes [217]. Also the logical correctness can be checked; e.g. modules with
a total line count of zero can be deemed suspicious; e.g., Lessmann et al. [200]
and Dejaeger et al. [76] discarded observations with a total line count of zero.

Depending on the exact learning algorithm under investigation, execution of
one or more preprocessing steps is a sine qua non to enable meaningful analysis.
For instance, including a constant feature can break techniques such as logistic
regression which are based on first or second order derivatives. Other techniques,
e.g., decision tree algorithms, will simply ignore uninformative attributes. In
order to assess the issues outlined by Gray et al., the following preprocessing
steps are initially applied to each data set. Each observation (software module)
in the data sets consists of a unique ID, several static code features and an error
count. First, the data used to learn and validate the models are selected and
thus, the ID and error density as well as attributes exhibiting zero variance are
discarded. Next, the error count is discretized into a boolean value where 0
indicates that no errors were recorded for this software module and 1 otherwise,
in line with e.g. [200,230,315,317,320]. Finally, it should be specified how to deal
with missing values; the next paragraph offers a commonplace solution, resulting
in the MDP◦ and Promise◦ data sets. When investigating the claims of Gray et
al., an alternative preprocessing schema is adopted in this study, yielding MDP′,
MDP⋆ and MDP′′. An overview of all data sets is shown in Table 5.2, while
Procedure Initial preprocessing summarizes the initial preprocessing steps, and
Procedure Further preprocessing sums up the base preprocessing and alternative
preprocessing schema in the top and bottom panel respectively.

5.2.1 Basic preprocessing schema

This study quantifies, amongst other objectives, the differences between data
sets derived from the Promise and the MDP repository, and thus only data sets
originally available in both repositories have been selected. Subsequent to the
initial preprocessing steps outlined above, a missing value handling procedure
is performed since some techniques are unable to cope with missing values (e.g.
logistic regression). Note that seven data sets contain a large number of missing
values on the same attribute, decision density. To retain as much data as
possible, the attribute associated with the missing values is removed from the
data set if more than 10% of its values are missing. Otherwise, the observations
associated with the missing values are discarded.
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5.2.2 Alternative preprocessing schema

In response to Gray et al., an alternative data preprocessing schema was pro-
posed by Shepperd et al. [285]3 who proposed the removal of problem data (e.g.
logically incorrect observations) as a first step, and the subsequent removal of
duplicate or inconsistent observations, resulting in DS′ and DS′′ respectively.

The NASA data was mined using the McCabe IQ suite, and contains varied
quantities of correlated attributes, which can be used to verify data integrity.
An example can be found e.g. in the Halstead measures, which are formulaic
expressions of operator and operand counts. Observations containing attributes
violating referential constraints are deemed logically incorrect and are removed
(lines 3-5).

Note that observations with a total line count of zero are retained, since
Gray et al. argue that empty modules can constitute a valid part of the system,
and advise against removal. Subsequent to removing observations violating
referential constraints, lines 6-8 discard observations with missing values, as
suggested by Shepperd et al. [285], yielding the DS′ data sets.

The DS′ data sets can be further processed by removing duplicates and in-
consistent observations; Gray et al. point out that the presence of duplicates
can perhaps reflect real life situations, but is problematic in the context of evalu-
ating the future generalisability of prediction models. Inconsistent observations
on the other hand reflect the situation of multiple modules with similar length
and complexity, some being faulty and others not. Learners will be unable to
discriminate between both, resulting in an upper bound on the generalizing abil-
ity of defect models. DS⋆ features only duplicate removal, see lines 9-12, while
in DS′′ also inconsistent observations are discarded (lines 13-17).

Procedure Initial preprocessing

Initial preprocessing steps

inputs : MDP - NASA MDP data
Promise - Promise data

// DS represents one specific data set

1 for each DS ∈ MDP ∪ Promise do
2 Remove attributes ID and error density
3 for j = 1 to n do // Removing constant attributes

4 if variance (DS.x(j)) = 0 then
5 DS.x(j) = []

6 for i = 1 to N do // Discretizing error count

7 if DS.yi > 0 then
8 DS.yi = 1

output: DS

3http://nasa-softwaredefectdatasets.wikispaces.com
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Procedure Further preprocessing

Basic preprocessing schema

inputs : DS - Data after initial preprocessing
// DS represents one specific data set

1 for each DS do
2 for j = 1 to n do // Handling missing values

3 if count ( missing (DS.x(j))) > N×0.1 then
4 DS.x(j) = []

5 else
6 (DS.xi, DS.yi) = []

output: DS◦

Alternative preprocessing schema

1 Select MDP data sets
2 for each DS do
3 for i = 1 to N do // Removing logically incorrect obs.

4 if incorrect (DS.xi) then
5 (DS.xi, DS.yi) = []

6 for i = 1 to N do // Removing obs. with missing values

7 if count ( missing (DS.xi))> 0 then
8 (DS.xi, DS.yi) = []

output: DS′

9 for i = 1 to N do // Removing duplicate obs.

10 for k = i+1 to N do
11 if (DS.xi,DS.yi) = (DS.xk,DS.yk) then
12 (DS.xk, DS.yk) = []

output: DS⋆

13 for i = 1 to N do // Removing inconsistent obs.

14 for k = i+1 to N do
15 if DS.xi = DS.xk then
16 (DS.xi, DS.yi) = []
17 (DS.xk, DS.yk) = []

output: DS′′
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MDP◦ Promise◦ MDP′ MDP⋆ MDP′′

N n %fp N n %fp N n %fp N n %fp N n %fp

CM1 505 36 9.5 498 21 9.8 344 37 12.2 327 37 12.8 327 37 12.8

JM1 10,878 21 19.3 10,880 21 19.3 9,593 21 18.3 7,842 21 21.3 7,782 21 21.5

KC1 2,107 21 15.4 2,109 21 15.5 2,096 21 15.5 1,203 21 26.1 1,183 21 26.5

KC3 458 38 9.4 458 39 9.4 200 39 18.0 194 39 18.6 194 39 18.6

MC1 9,466 38 0.7 9,466 38 0.7 9,277 38 0.7 1,998 38 2.3 1,988 38 2.3

MC2 161 38 32.3 161 39 32.3 127 39 34.6 125 39 35.2 125 39 35.2

MW1 403 36 7.7 403 37 7.7 264 37 10.2 255 37 10.6 253 37 10.7

PC1 1,107 36 6.9 1,109 21 6.9 759 37 8.0 711 37 8.6 705 37 8.7

PC2 5,589 35 0.4 5,589 36 0.4 1,585 36 1.0 745 36 2.1 745 36 2.1

PC3 1,563 36 10.2 1,563 37 10.2 1,125 37 12.4 1,079 37 12.4 1,077 37 12.4

PC4 1,458 37 12.2 1,458 37 12.2 1,399 37 12.7 1,288 37 13.7 1,287 37 13.8

PC5 17,186 38 3.0 17,186 38 3.0 17,001 38 3.0 1,723 38 27.3 1,711 38 27.5

Basic preprocessing schema Alternative preprocessing schema

Table 5.2: The impact of preprocessing on data sets

5.3 Empirical setup

This section first describes the experimental design of the study, and subse-
quently introduces the concept of operating condition to the fault prediction
literature. Finally, an overview of the statistical testing procedures is given,
constituting our updated benchmarking framework.

5.3.1 Experimental design

As this study entails the assessment of different data preprocessing schemas, and
to increase comparability to earlier results, the selection of classification tech-
niques is identical to that of Lessmann et al. [200]. That is, the same set of 22
learners is evaluated across all data sets. Table 5.3 provides a general overview
of these learners, of which more detailed descriptions can be found in Section
2.2. In the previous chapter, it was concluded that while a number of alternative
learning paradigms have recently been proposed in the context of defect pre-
diction, such as ant colony optimization [320], particle swarm intelligence [70],
genetic programming [91, 209] and artificial immune recognition systems [53],
none of them has seen widespread adoption for a variety of reasons including
lack of comprehensibility, unavailability of software or limited gain compared to
more widespread techniques [76].

Furthermore, note that several learners exhibit adjustable parameters, also
termed hyperparameters, which allow learners to better model data set char-
acteristics. Where appropriate, a grid-search procedure is adopted, based on
a set of candidate values for each hyperparameter. This model selection step
is guided by the AUC as criterion of choice, see also Section 2.4.5, comparing
all hyperparameter combinations by means of a 10-fold cross validation on the
training data.

The study of Lessmann et al. adopted a holdout splitting procedure, par-
titioning each data set into a separate training and test set. While this is an
established procedure in case of larger data sets, the present selection of data
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sets demands for a stronger randomized 10-fold cross validation procedure to
mitigate the risk of sampling bias during model building [334].

5.3.2 Updated benchmarking framework

Classification performance indicators

Earlier, several performance indicators were covered, including single threshold
metrics such as 0-1 loss, and measures aggregating over all possible thresholds
such as ROC analysis and the H-measure. Observe that if the class distribu-
tion and the cost of misclassifying a (non) faulty module are known, an op-
timal threshold can be determined, yielding an optimal classifier. In line with
Hernández-Orallo et al. [139], the combination of class distribution and misclas-
sification costs is referred to as an operating condition4, and if this information
is unknown when evaluating a model, the use of alternative metrics is advised
[200]. In such situation, software defect models should be assessed across all
possible operating conditions, using e.g ROC analysis.

Recently, the AUC has been shown to be well suited in the common situa-
tion when the operating condition is unknown during model evaluation, while
at deployment time, further information becomes available [139]. This corre-
sponds to the situation of developing defect prediction models on historic data
without having access to specific knowledge on e.g. the misclassification costs
in future projects. When incorporating model output in the software develop-
ment process, e.g. to streamline testing efforts, typically detailed information on
the seriousness of different types of misclassification becomes available [76,153].
Assume that misclassifying a faulty instance as not fault prone has a misclassi-
fication cost c0, whereas a fault free instance classified as fault prone costs c1.
The costs can be normalized by setting b = c0 + c1 and c = c0/b, giving the
following definition of expected minimum misclassification loss:

Lc =

∫ 1

0

Qc(Tc(c); c)wc(c)dc,
�� ��5.1

with Qc(Tc(c); c) the loss at a specific decision threshold Tc(c) and cost propor-
tion c. wc(c) is a weight distribution on the cost proportions, and is assumed to
be a continuous uniform distribution5. Depending on the available information
on the operating condition at evaluation and deployment time, the threshold
Tc(c) will be determined differently. E.g. if the deployment operating condition
is already known at evaluation time, an optimal threshold t⋆ can be determined,
setting Tc(c) = t⋆. However, this assumption is rarely met in reality, and we
consider the more common situation of knowing the precise operating condition
only at deployment time. During model deployment, a threshold will be defined

4Throughout this discussion, the class distribution will be considered fixed, such that op-
erating condition and cost proportion are interchangeable. Note that an equivalent reasoning
can be followed when taking both cost and class distributions into account.

5Note that recently, e.g. Hand introduced a metric relaxing the assumption of a continuous
uniform distribution over the cost proportions [126].
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Table 5.3: Overview of classifiers, adopted from Lessmann et al. [200]

Classifier Philosophy

Statistical classifiers Strive to construct a Bayes optimal classifier by estimat-
ing either posterior probabilities directly (LogReg), or class-
conditional probabilities (LDA, QDA, NB, BayesNet) which
are subsequently converted into posterior probabilities using
Bayes’ theorem. LDA/QDA assume a multivariate Gaus-
sian density function, whereas NB is based on the assump-
tion that attributes are conditionally independent, so that
class-conditional probabilities can be estimated individually
per attribute. BayesNet extends NB by explicitly modeling
statements about independence and correlation among at-
tributes. LARS adopts a different approach and consists
of a multivariate linear regression model and heuristics to
shrink the number of features. RVM has been proposed as
an extension of the SVM (see below) which avoids the need
to tune certain hyperparameters and may incorporate kernel
functions SVMs are unable to process.

Linear Discriminant
Analysis

LDA1

Quadratic Discriminant
Analysis

QDA1

Logistic Regression LogReg1

Näıve Bayes NB2

Bayesian Networks BayesNet2

Least-Angle Regression LARS1

Relevance Vector Machine RVM1

Nearest neighbor methods Belong to the group of analogy-based methods which clas-
sify a module by considering the k most similar examples.
The definition of similarity differs among algorithms. An
Euclidian distance is used in k-NN whereas K⋆ employs an
entropy-based distance function.

k-Nearest Neighbor k-NN2

K-Star K⋆2

Neural Networks Mathematical representations loosely inspired by the func-
tioning of the human brain. They depict a network struc-
ture which defines a concatenation of weighting, aggregation
and thresholding functions that are applied to a software
module’s attributes to obtain an approximation of its pos-
terior probability of being fault prone. The study includes
two types of MLP learners which incorporate different ap-
proaches to avoid overfitting the training data, i.e. weight
decay and Bayesian Learning.

Multi-Layer Perceptron MLP1,3

Radial Basis Function
Network

RBF net2

Support vector
machine-based classifiers

Utilize mathematical programming to optimize a linear de-
cision function that discriminates between (non) fault prone
modules. A kernel function enables more complex decision
boundaries by means of an implicit, nonlinear transforma-
tion of attribute values. This kernel function is polynomial
for the VP classifier, whereas SVM and LS-SVM consider a
radial basis function. L-SVM and LP result in linear classi-
fication models.

Support Vector Machine SVM1

Lagrangian SVM L-SVM1

Least Squares SVM LS-SVM1

Linear Programming LP1

Voted Perceptron VP1

Decision tree approaches Recursively partition the training data by means of attribute
splits. The algorithms differ mainly in the splitting criterion
which determines the attribute used in a given iteration to
separate the data. C4.5 induces decision trees based on the
information-theoretical concept of entropy, whereas CART
uses the Gini criterion. ADT distinguishes between alter-
nating splitter and prediction nodes. A prediction is com-
puted as the sum over all prediction nodes an instance visits
while traversing the tree.

C4.5 Decision Tree C4.52

Classification and
Regression Tree

CART1

Alternating Decision Tree ADT2

Ensemble methods Meta-learning schemes that embody several base-classifiers.
These are built independently and participate in a voting
procedure to obtain a final class prediction. RndFor incor-
porates CART as base learner, whereas LMT utilizes Lo-
gReg. Each base learner is derived from a limited number of
attributes. These are selected at random within the RndFor
procedure, whereby the user has to predefine their number.
LMT considers only univariate regression models, i.e. uses
one attribute per iteration, which is selected automatically.

Random Forest RndFor1

Logistic Model Tree LMT2

1 Implemented in the Matlab environment.
2 Implemented in the Weka environment.
3 Two multi-layer perceptron learning schemas were considered; MLP-1 refers to
the case where the neural network has been trained with a weight decay penalty
to prevent overfitting whereas MLP-2 employs a Bayesian learning paradigm.
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proportional to the operating condition; however, when assessing the different
models, this information is unknown, and models should be evaluated for a wide
range of cost proportions. Assuming scores are expressed on an undefined scale,
the threshold will be set in such a way that the fraction of cases predicted as
fault prone is proportionate to the operating condition, Tc = π0F1(c) + π1F1(c)
with πl the prior probability of belonging to class l. Then, it can be shown that
the expected loss is linearly related to the AUC [139].

Alternatively, one can also consider the situation where further information
on the operating condition is unavailable both at deployment and evaluation
time, reflecting the difficulty of determining the seriousness of different types of
misclassification, even when incorporating the prediction model into the devel-
opment process. In such case, a reasonable choice could be to set the threshold
to a relative quantity taken from a uniform distribution. Again the expected
misclassification loss will be linearly related to the AUC.

Finally, note that the AUC is a ranking measure, and thus unaffected by a
monotonic transformation on the output of a model; in case the models’ scores
express a conditional probability of belonging to the class of fault prone modules,
alternative measures such as the Brier score can also be considered [48].

Statistical inference

Empirical studies try to assess the impact of one or more factors on an out-
come variable, while each factor constitutes multiple levels or treatments. Data
is collected per treatment via one or more test attempts and while it seems
straightforward to identify the best treatment, the data can be subjected to
noise and a statistical framework should be adopted when making statements
on the relative performance of treatments. Section 2.3.3 detailed a nonparamet-
ric framework consisting of a Friedman test paired with a post-hoc Bonferroni-
Dunn test (Section 3.4.6) or a post-hoc Nemenyi test (Section 4.4.4). However,
a large number of other statistical tests have been developed, and their inclusion
into the statistical framework of a study depends on its precise context. Key to
the statistical framework is the minimization of the probability of incorrectly
rejecting the null hypothesis (i.e. maximizing statistical power), given a specific
Type I error rate. When observations are being assessed across all treatments,
paired tests can be used, incorporating the additional information to enhance
the power of the statistical framework.

In software defect prediction, the factor typically being investigated is the
type of classifier, while the outcome variable is its classification performance
across one or more data sets. In such case, the data sets can be seen as blocking
factor and paired tests can be used such as the well known repeated measures
ANOVA or its nonparametric counterpart, the Friedman test. In this chapter,
two factors are of interest: the impact of various levels of data preprocessing
and the impact of different classifiers.

A second challenge lies in the fact that prediction studies typically compare
many learners over multiple data sets, sometimes using multiple performance
indicators. The number of pairwise inferential tests will thus increase accord-
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ingly. Whilst for a single test, the likelihood of committing a Type I error is
determined by α which is customarily set at 0.05, the Type I error will inflate
as more tests are performed. As such, results may not be trustworthy and we
cannot be confident that we really should reject a particular null hypothesis.
The solution lies in adjusting the value of α to reflect the number of tests being
conducted. The most conservative procedure, suggested by Bonferroni, is to
divide α by the number of hypotheses; however, more appropriate procedures
exist, which are adopted in this study.

Whilst the Friedman test frequently served as an underpinning of empirical
studies, Iman and Davenport noted that this test can be overly conservative
and propose the following statistic instead

FF =
(P − 1)χ2

F

P (k − 1)− χ2
F

∼ F(k−1)[(k−1)×(P−1)]

�� ��5.2

which is adopted instead of the Friedman test. When comparing the results
across different levels of data preprocessing, k equals 4 and P equals 12× 22 =
264. When considering a specific level of data preprocessing, and focussing on
the classifiers, k equals 22 and P equals 12. Note that as a rule of thumb,
Lehman [199] specified the inequality k × P > 30, which we satisfy in both
cases.

If the null hypothesis of equal performance across all treatments is rejected
by the Iman and Davenport test, we proceed with a 1×k post-hoc Bonferroni
procedure, comparing one treatment (the control treatment) to all others. The
test statistic when comparing treatment m with treatment m′ is:

z =
ARm −ARm′√

k(k+1)
6P

∼ N(0, 1).
�� ��5.3

The probability that the value of z comes from a normal distribution is then
compared to an appropriate error rate. The simplest approach, the Bonferroni-
Dunn test, divides the family wise error rate α by the number of hypotheses,
k − 1. However, this test is often too conservative, and in case of independent
hypotheses, it has been shown that the Bonferroni-Rom test is more powerful
[108, 248]. This test recursively identifies an appropriate adjusted significance
level α′ per hypothesis, controlling the family wise error rate α at exactly the
nominal level (e.g. α = 0.05).

Note that e.g. Lessmann et al. [200] adopted a k×k Nemenyi test, comparing
all treatments (classifiers) to each other. When comparing against a single
control treatment, the number of test hypotheses is much smaller (k−1 instead
of
(
k
2

)
), giving an increase in statistical power.

Finally, we add the rider that all significance tests must be interpreted with
some caution since they say nothing about the effect size. When dealing with
very large sample sizes it is possible to obtain very significant results of very
small effects, in other words, differences that have little practical importance.

165



5.4 Experimental results

This section quantifies the dissimilarity between data stemming from the MDP
and the Promise repository in the next paragraph. Subsequently, as models built
on either repository are not found to differ significantly, the attention is shifted
towards the alternative preprocessing schema using only the MDP repository
data. Reconciling the issues raised by Gray et al. [117], and defect prediction
reality, it is argued that the proposed MDP⋆ preprocessing approach is the most
feasible and therefore, the third part presents the detailed results hereof.

5.4.1 Basic preprocessing schema

0 5 10 15 20

CART
LP
VP

RBF net
QDA

C 4.5
K*

LogReg
LDA

NB
LARS
k−NN
MLP1
MLP2

LMT
ADT

BayesNet
RVM
SVM

LS−SVM
L−SVM

ARs

0 5 10 15 20

CART
VP

RBF net
K*

k−NN
LARS

QDA
SVM

NB
ADT

C 4.5
LMT
RVM

LogReg
LDA

LP
BayesNet

L−SVM
MLP1
MPL2

LS−SVM

ARs

Figure 5.1: Bonferroni-Rom ranking on the
MDP◦ data and on the results taken from
Lessmann et al., in top and bottom panel
respectively

While the NASA data have been
repeatedly investigated, the dis-
crepancies amongst data sets pre-
sented in Section 5.2 are often
all but ignored. Firstly, the
predictive performance of defect
models built on data stemming
from MDP and Promise reposi-
tories, referred to as MDP◦ and
Promise◦ respectively, is com-
pared and we find little impact
upon the average ranks (ARs)
of individual learners across both
repositories. Typically, the AR
differ by less than one point,
with a maximum of 2.16 points.
Therefore, we decided to focus on
the MDP◦ data as baseline for
the remainder of this study. Note
the data sets were originally pub-
lished by the NASA as part of
a software measurement project
to assist software practitioners in
gaining insight into software de-
fect occurrence, motivating our
choice of baseline. Nevertheless
this does not mean scientists can
ignore data quality particularly for the data-driven techniques we are investi-
gating in this study.

When investigating the performance of individual learners on the MDP◦

data, the Davenport-Iman test which assesses whether there are any differ-
ences in predictive performance amongst learners is employed in a first phase.
As this test resulted in a p-value smaller than 10−10, the null hypothesis of
equal performance amongst all learners is rejected and subsequently, a post-hoc
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Bonferroni-Rom test is performed, comparing one control classifier to all oth-
ers. As Random Forest (RndFor) is found to induce the best performing defect
prediction models, in line with e.g. [76, 118], this learner is selected as control
classifier. The outcome of this test is presented in Fig. 5.1, top panel. The
horizontal axis in this figure corresponds to the AR of a technique across all
data sets. The dots represent the AR of each technique, while the vertical line
corresponds to the AR of the control classifier (RndFor). Note the Bonferroni-
Rom test sets an appropriate adjusted significance level for each comparison
with the control classifier; if a dot is located in the darker (lighter) shaded area,
it is found to be not outperformed by RndFor at the 5% (1%) level.

Fig. 5.1, bottom panel, provides the original results of Lessmann et al.,
reevaluated using the Bonferroni-Rom test. Note the close resemblance in the
relative performance, identifying a similar set of techniques as best/worst per-
forming. Minor differences can be attributed to an alternative data selection, dif-
ferent training/test set splitting and implementation details of individual learn-
ers. One notable exception is Linear Programming (LP), which is attributed
the second highest AR on the MDP◦ data, while found not being outperformed
by RndFor in the previous study. As can be observed, extending the selection
of data sets to 12 results in an increased number of techniques found to be out-
performed. Earlier, it was concluded that ‘the importance of the classification
model may have been overestimated in the previous research’ [200], which is
supported by the statistically insignificant difference at the 1% level between
RndFor and e.g. various support vector machine implementations, both neural
network learners and the Logistic Model Trees (LMT) ensemble classifier.

5.4.2 Alternative preprocessing schema

0 1 2 3 4

MDP*

MDP’’

MDP’

ARs

MDP°

Figure 5.2: Bonferroni-Rom ranking on the al-
ternative preprocessing schema

Addressing the concerns raised
by Gray et al. in a step-
wise fashion, alternative ver-
sions of each data set can be
derived, referred to as MDP’,
MDP⋆ and MDP” respectively,
see Section 5.2. By considering
the combination of technique
and data set as blocking factor,
and data versions as treatment,
the impact of the alternative
preprocessing schema can be
quantified using the same sta-
tistical framework. In a first
step, the Iman-Davenport test
results in a p-value smaller
than 10−10, rejecting the null
hypothesis of equal performing
defect predictors across versions. Subsequently, the Bonferroni-Rom procedure
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compares the performance of defect predictors built on the alternative data sets
to those induced on the MDP◦ data, Fig. 5.2. The vertical line in this figure
again represents the AR of the control treatment, MPD◦, while the ARs of other
data versions are marked by dots. It is apparent that especially duplicate re-
moval yields a significant deterioration in classification performance, cf. MDP⋆

and MDP′′; defect prediction models built on the MDP′ data are not found to
be significantly worse performing at the 5% level than those built on the MDP◦

data, while both MDP⋆ and MDP′′ data result in significantly lower perform-
ing models at the 1% level. Furthermore, a contrast estimation was performed,
showing the expected differences between two data versions’ performance in
terms of AUC, see Table 5.4. Here, the contrast estimation procedure outlined
by Garćıa et al. is adopted, which makes an all pairwise comparison between
the medians of samples of results [108]. It can be seen that the drop in terms
of AUC is rather limited; e.g. comparing MDP◦ and MDP⋆, an estimated drop
of 3.578 points can be observed.

Focussing on individual data sets, different patterns can however be ob-
served. Fig. 5.3a and Fig. 5.3b display the impact of subsequent preprocessing
steps on each data set; the bold line illustrates the overall average while separate
data sets are represented by a dashed, dotted or full line respectively. The data
sets with the largest fraction of duplicates include PC5 (89.9%), MC1 (78.5%)
and KC1 (42.6%), which all exhibit a sharp performance drop upon discarding
these observations in MDP⋆. Note that while data sets with large quantities of
duplicates typically exhibit a similar pattern, also other aspects come into play,
such as the total number of instances and the proportion of fault prone instances.
Figures 5.3c, 5.3d and 5.3e further zoom in on PC1, PC2 and PC5 respectively,
illustrating these aspects. The bars indicate the proportion of observations re-
tained at different preprocessing steps while the bold line again provides the
classification performance of defect predictor models built on a specific version
of the data. PC1 and PC2 show that discarding logically incorrect cases and
cases with missing values can positively affect classification performance while
on the other hand, PC5 illustrates the impact duplicate removal can have on
duplicate-heavy data sets: a sharp drop in classification performance can be
seen upon discarding these observations. Note that PC2 is the most imbalanced
data set, which partially explains the observed trend for this data set as dis-
carding observations seems to improve performance. The impact of removing
conflicting values is typically limited, but is still noteworthy in some cases; this
is e.g. true for PC1. Finally, it should be pointed out that some data sets, e.g.
PC2⋆ and PC2′′, are identical, but result in slightly different performing models
due to sampling effects.

In reality, software modules with similar static code characteristics are often
present in a software project due to the limited discriminatory abilities of some
static code characteristics [117], however, since machine learning models should
be validated on a set of unseen samples, Gray et al. argued in favor of removing
duplicate instances. Inconsistent instances however, i.e. modules with similar
static code features but different class label, can be seen as an expression of
the uncertainty that a module with specific characteristics will be faulty. The
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fraction of inconsistent instances which cannot be classified correctly can be
regarded as a theoretic upper bound of the generalization performance on a
data set and removal of these instances artificially mitigates this upper bound.
This situation coincides with the MDP⋆ data, and the results of individual
learners on this data are further investigated in the following paragraph.

MDP◦ MDP′ MDP⋆ MDP′′

MDP◦ – 0.635 3.579 3.661

MDP’ -0.635 – 2.944 3.026

MDP⋆ -3.579 -2.944 – 0.082

MDP” -3.661 -3.026 -0.082 –

Table 5.4: Contrast estimation on the alternative preprocessing schema

5.4.3 Benchmarking on the MDP⋆ data

0 5 10 15 20

CART
RBF net

VP
LP
NB

C 4.5
QDA

K*
k−NN

LogReg
LDA

MLP1
ADT

BayesNet
LMT

LS−SVM
RVM
SVM

MLP2
LARS

L−SVM

ARs

Figure 5.4: Bonferroni-Rom ranking on the
MDP⋆ data

Assessing models built on the
MDP⋆ data, individual learners
constitute the treatments, and
the collection of MDP⋆ data
sets represents the test attempts.
Following the rejection of the
null hypothesis of the Iman-
Davenport test, with a p-value
of again smaller than 10−10, the
Bonferroni-Rom test is applied, of
which the outcome is given in Fig.
5.4. RndFor is attributed the low-
est AR, and is thus again consid-
ered as control classifier.

Table 5.5 presents the detailed
classification performance in terms of AUC on the MDP⋆ data. The last column
provides the Average Rank (AR) of each technique, with the best performing
technique, lowest AR, indicated in bold and underlined. The AR of a tech-
nique that is not significantly different from the best performing technique at
5% is tabulated in boldface font, while results significantly different at 1% are
displayed in italic script. Classifiers differing at the 5% level but not at the
1% level are displayed in normal script. The Bonferroni-Rom test is used dur-
ing these assessments. From these results, it can be seen that the set of best
performing techniques is similar to those determined by Lessmann et al. [200].
Identifying RndFor as best performing learner, the set of techniques being sig-
nificantly outperformed by this learner on the MDP⋆ data is in fact a subset of
the 2008 results. Furthermore, the relative performance of individual techniques
is comparable to a large extent, Linear Programming (LP) and Least-Angle Re-
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Figure 5.3: Decomposition of the results: evolution of individual data sets
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gression (LARS) exhibiting the largest discrepancies. In the 2008 study, LARS
was found to be outperformed at the 5% level but not at the 1% level, while it
is found to be one of the top performing techniques on the MDP⋆ data. While
many techniques are not significantly outperformed by RndFor, it is interest-
ing to note that a technique such as BayesNet, which results in comprehensible
models, is also amongst these. Univariate decision tree algorithms such as C4.5
and CART are however significantly outperformed, indicating models with axis-
parallel decision boundaries are unable to fully capture the underlying patterns
of the data. Multivariate linear models such as LogReg and LDA are only
outperformed at the 1% level.

Adopting again the contrast estimation procedure outlined by Garćıa [108],
Table 5.6 provides the estimated difference between two classifiers’ performance.
As concluded by the Bonferroni-Rom procedure, all learners have inferior perfor-
mance to RndFor, the best performing classifier. The worst classifier is CART,
which is outperformed by all other techniques by a large margin. This learner
is unable to deal with the class imbalance present in most data sets, returning
models which perform equal to random guessing, AUC ≈ 0.5. Note that also the
second to last technique, RBF net, is outperformed by RndFor by a consider-
able margin, i.e. 12.5 AUC points. The performance differences between other
techniques are less striking, but even small differences can result in significant
cost savings in the software development process [310]. This further illustrates
the necessity of having proper statistical procedures in place, allowing to verify
whether small performance differences are due to chance or signal a recurring
trend [108].

It should also be pointed out that a large number of alternative classification
metrics have previously been considered in software defect prediction (see e.g.
Table 2.3 for an overview). As it is a general finding that alternative metrics
often lead to different conclusions, see e.g. [13, 325], the findings of this study
were validated in terms of the Brier score, a classification metric recently shown
to be suitable when model output represents the posterior class probability
of belonging to the class of (non) fault prone modules [139]. The Brier score
results support the AUC-based results presented above. They show a very
similar trend with respect to the impact of data preprocessing and individual
learners’ performance, respectively.
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5.5 Conclusion

This chapter tried to answer the call of Gray et al. [117] , who pointed out
several data quality issues present in the NASA defect prediction data sets.
Building upon the study of Lessmann et al., this chapter first identifies a number
of differences between data stemming from the NASA MDP and the Promise
repository. Overall the effect of these differences are not found to be substantial,
so we proceed by outlining a stepwise preprocessing procedure on the MDP data,
addressing specific data quality issues. That said, we believe researchers should
still make strenuous efforts to deal with poor data quality and make their data
preprocessing explicit when reporting experimental results.

The presence of duplicate instances significantly impacts software defect pre-
diction performance, indicating earlier studies might have overestimated the
predictive power of such models. A contrast estimation procedure further quan-
tifies this impact by indicating a drop of less than 4 points in terms of AUC, thus
confirming the importance of proper data preprocessing procedures. In general,
adopting a machine learning approach is identified as an important piece in the
solution to tackle software quality issues. Zooming in on individual data sets
paints however a different picture; data sets with more than 40% duplicates (i.e.
PC5, MC1 and KC1) seem more seriously impacted by the issues outlined by
Gray et al. and removal of these duplicate cases leads to a performance penalty
of around 10 AUC points. Proposing a specific data preprocessing procedure
which removes duplicates while retaining conflicting cases, referred to as MDP⋆,
the large-scale benchmarking experiment of Lessmann et al. is repeated. While
Random Forest is again found to be the best performing technique, multivari-
ate linear models are found to be outperformed at the 5% level while learners
resulting in univariate decision trees are outperformed at the 1% level, partially
confirming earlier results.

The motivation of our study was the warning of Gray et al. that the presence
of duplicates may have invalidated earlier findings; our results provide an answer
to this by considering a plethora of classifiers and a stepwise preprocessing
approach, signalling these data quality problems are less of an issue to most data
sets and learners. Moreover, by repetition of our 2008 study on the MDP⋆ data,
we have shown that general findings on the relative performance of classifiers
are in fact still valid.

Finally, this study serves as a complement to Lessmann et al. by proposing
an alternative statistical framework, paired with the introduction of contrast es-
timation into software fault prediction, incorporating the recent work of Garćıa
et al. [108].
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There are three roads to ruin;
women, gambling and technicians.
The most pleasant is with women,
the quickest is with gambling, but
the surest is with technicians.

Georges Pompidou, 1911 – 1974 6
Cross release validation: a case study on

the Android platform

In the final chapter of this dissertation, we challenge the perennial believe that
historic data can be utilized to predict future faults. In contrast with previous
chapters, the situation in which only information regarding the fault proneness
of precursory releases is available is investigated and compared to a more com-
mon cross validation approach, see also Section 2.3.2. This naturally constraints
our selection of data sets, discarding e.g. the NASA MDP data as possibility.
As such, a collection effort on the open source Android platform was instigated,
mining its development history. Acknowledging the importance of reproducibil-
ity, details of our data collection effort are also presented which can offer a
useful guideline to other researchers. Note that while development archives of-
ten have their own peculiarities, many of the underlying ideas remain universally
applicable.

This chapter is based on the following manuscript

- K. Dejaeger, and B. Baesens, “On the validation of software defect models,”
Technical document

6.1 Introduction

Software development is often perceived to be a difficult and time intensive
activity, and various research tracks are assisting practitioners herein by lever-
aging the available historic information on prior development efforts, including
software reliability modeling [112], effort forecasting (Chapter 3) and software
fault prediction (Chapters 4 and 5). Practitioners typically adhere to a software
development methodology to better structure this activity and the waterfall ap-
proach is a prime example hereof. Alternatives include rational unified processes
[191] and methodologies inspired on open source software (OSS) development
[166], and almost invariantly, they exhibit the common property of including
a software verification and validation step in which the quality of the code is
tested. When focussing on OSS development, an often recurring theme seems
to be that the code is developed by geographically distributed teams of volun-
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teers who do not receive any direct compensation for their efforts. As such,
projects often lack any form of central project management and violate also
other well established software development practices such as the formation of
small teams, the enforcement of specific development guidelines, or the need for
requirement analyses [131,307]. Recently, the shift towards OSS has been gain-
ing momentum, rivaling commercial software solutions. Protagonists include the
Eclipse foundation, Mozilla Firefox, OpenOffice, Linux, and the Android plat-
form, which are also often stimulated by contributions from companies like IBM
(Eclipse) and Google (Android). Byproduct to this evolution, extrinsic incen-
tives such as monetary rewards and developer visibility are nowadays playing
an increasingly important role, suggesting that OSS communities are largely
welcoming commercial efforts [267].

Android is an open source platform for mobile devices such as smartphones
and tablet computers and is based on the Linux kernel while also drawing upon
other open source projects such as squeak (a bluetooth package) and yaffs (Yet
Another Flash File System). Evidently, the source code of the Android platform
is made available to the public, licensed under the Apache Licence v2, except
for the Linux kernel and its modifications, which are published under the GNU
Public Licence v2. The source code was first released in 2007, when Google
founded the Open Handset Alliance together with 33 others, including Intel,
T-Mobile and Samsung, and is currently being further developed as part of
the Android Open Source Project. Furthermore, an estimated 700.000 android
devices are being activated daily, signposting the economic importance of this
OSS project. Over time, many individuals contributed to this project, although
it was recently concluded that ‘while there is healthy contribution from non-
google/android community, these contributions are restricted to pockets of the
code base and not very widespread’ [292]. As such, the Android Open Source
Project can be catalogued as an OSS project with strong commercial influences.
Remark that a 6 month development life cycle is in place for major releases,
each receiving a specific nickname, which are followed by several minor releases.
Fig. 6.1 provides a chronological overview on the development of the Android
platform.

It has been pointed out that the introduction of software testing processes
to identify software faults in a timely manner is crucial since corrective main-
tenance costs inflate exponentially if faults are detected later in the software
development life cycle [38]. Moreover, recent studies indicated that an impor-
tant part of the expenses are made during the testing phase, reporting fractions
as high as 60% of the total development cost [29,85]. Early warning mechanisms
which flag error prone parts in the code base can provide a (partial) solution
hereto by allowing to streamline testing efforts. If such mechanisms take static
code features derived from source code as an input, and draw upon machine
learning literature, they are also commonly referred to as fault prediction mod-
els and their implementation in the Android platform seems especially desirable
given the fast succession of releases and its commercial background.

This study contributes to the literature by investigating the feasibility of
fault prediction in the context of the Android platform by application of a
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v 1.5

Cupcake
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Figure 6.1: Android platform chronological overview

broad scala of machine learning techniques, corresponding to different learn-
ing paradigms. More specifically, our selection resembles that of the previous
chapter, while also including two learners which, based on prior software fault
prediction literature, could prove to make a valuable addition to the current
set of techniques, i.e. rotation forest and an implementation of oblique decision
trees (oblique classifier 1). A second question raised by this study concerns
the validation of empirical results when data on multiple releases are available.
Typical validation procedures include holdout splitting [200], x-fold cross valida-
tion [4,70] and leave-one-out cross validation; however, the recently introduced
notion of concept drift in software fault prediction underscored the necessity
of adopting an alternative cross release approach, as it was concluded that the
quality of fault prediction varies over time [87]. As such, a more viable cross
release validation accounting for the ordering in software releases is also inves-
tigated. Building upon earlier work [173, 251, 342], both research questions are
rigorously explored by adopting again the updated benchmarking framework
presented in Chapter 5.

Note that some work also discussed the feasibility of cross project validation,
training and testing models on data stemming from different projects [134,317];
given the mixed results reported by these studies, see e.g. [178, 184, 317, 344],
and the opportunities offered to researchers by the open source nature of the
Android Open Source Project, such approach was however not considered in
this chapter.

The remainder of this chapter is structured as follows.
Section 6.2 outlines the data collection process, providing a set of useful guide-
lines to other researchers.
Section 6.3 explains the empirical setup.
Section 6.4 elaborates on the results and situates them within the literature.
Section 6.5 summarizes our findings and offers a discussion on their ramifica-
tions.

6.2 Mining the Android platform

This section details the procedure by which the data were collected. This was
in fact a two-step effort, in which an exploratory collection effort, detailed in
the first paragraph, served as an input to the actual data acquisition process,
explained in the second paragraph.
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6.2.1 Exploratory collection effort

Data on the development of the Android platform was made available in the
context of the Mining Software Repositories (MSR) challenge 2012 [287]. This
included a Git repository extract dating from October 2008 to June 2011 as
well as a dump of the public bug tracker, both accessible through the challenge
website1. Remark that the Android platform is structured into several smaller
projects, which is also reflected in the structure of the Git repository extract;
each project is maintained as a separate repository.

As a first step, both the Git repository extract and the bug tracker dump
were loaded into a database, providing us with a coarse overview of the Android
platform. Each commit in a Git repository is uniquely identified by a SHA1
hash and identifies committer and files changed by the commit. Furthermore,
Git offers the opportunity to specify the reason for each commit through a free
text commit message, which allows to link commits to entries in a bug tracker
[19, 332]2. When assigning a (non) fault label to a source file on the basis of
commit messages, the linkage with the bug tracker can serve as an instrument to
instill additional confidence into the labeling. For instance, a commit referring
to a bug which was closed several months before submission of the commit can
be deemed questionable, and also the status of a bug (e.g. ‘open’, ‘won’t fix’,
‘resolved’) can be taken into consideration [345]. However, since the bug IDs
used during development typically refer to an inaccessible, private bug tracker,
this approach was not possible.

Secondly, the head of the main trunk of the Android platform was checked
out, which includes around 192,000 files or a total of ∼4.15 GB, not including the
kernel. As indicated earlier, the Android platform constitutes several smaller
projects, such as externally developed applications, custom android versions,
and the Linux kernel, to which a small number of modifications have been
made3. As such, the history of specific parts of the Android platform was
deemed uninteresting when investigating early warning mechanisms from the
viewpoint of the Android developers. Moreover, as it has been recognized that
considerable differences exist between the empirical distribution of static code
features of different programming languages [329], it was decided to limit our
study to java source code files, in line with e.g. [345].

1www.2012.msrconf.org
2Observe that there also exist content management systems with integrated bug tracker.

Examples hereof are Gemini and Jira.
3Recently, the ‘Android mainlining project’ was founded to integrate the changes made in

context of the Android platform back into the Linux kernel project. It was recognized that
about 250 commits differentiate both versions. www.elinux.org/Android Mainlining Project
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The following exclusion criteria were adopted to delineate the scope of this
study.

• Exclude projects containing less than 1,000 java source files.

Excluded projects:

Abi Development Frameworks/ex Hardware
Bionic Device Frameworks/media ndk
Bootable Docs Frameworks/opt Prebuilt
Build Frameworks/compile Frameworks/support System

• Exclude externally developed projects.

Excluded projects:

Packages, Externals

• Exclude projects directly related to testing processes.

Excluded projects:

cts

Table 6.1 provides an overview of the retained projects. The Git repository
extract made available for the MSR challenge contained data for a three year
time frame; however, the data up to 26/3/2009 are not useable as commit
messages and subject lines typically provide no information on the reason of
the commit. A change in the logging procedure allowed for additional commit
information to be captured from that point onwards. Remark also that part of
the history of the Libcore project was not included in the Git repository extract,
further motivating the final collection effort in which only data directly obtained
from the Android Open Source Project was considered.

6.2.2 Final collection effort

Considering the 6 month development cycle, data on 4 major releases was col-
lected and matched with 6 months of post release defect data. The chronological
overview of Fig. 6.1 indicates that the first release on which sufficient data is

Project Description

Dalvik Dalvik is a virtual machine which allows to compile apps to byte
code and executing them in this virtual machine; is based on the now
defunct Harmony Apache project. Contains both Java and C source
code files.

Frameworks
base

A collection of smaller parts which has been developed or adapted to
the Android project such as telephony and camera services. Contains
both Java and C source code files.

Libcore A library of files which are frequently used by other parts of the
Android platform; was initially part of the Dalvik subproject until
30/04/2010. These files have mainly been written in Java.

SDK The software development kit (SDK) which is offered to Android de-
velopers to assist in creating applications for the Android platform.

Table 6.1: Description of study scope
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available is Eclair, and also 3 more recent releases were considered; i.e. Froyo,
Gingerbread and Icecream sandwich. The source code of all projects listed in
Table 6.1 was downloaded for each release, totalling ∼1.3 GB of source code,
documentation and support files. A set of static code features was derived from
the Java source files, except for those related to testing procedures. An open
source tool called ‘Perst’ was adopted hereto, which makes use of a code parser
generated by JavaCC [311]. The most recent version was obtained and modi-
fied to extent the set features which can be mined by this tool. As such, the
set of features includes line counts, McCabe and Halstead metrics, and their
calculation is provided in Table 6.3.

LOC based metrics
Lines Of Code (LOC) has been used as an approximation of software size since
the late sixties and more recently has been adopted as a proxy for software
complexity in software fault prediction studies [94]. Being highly dependent
on the selected programming language, a number of alternative measures were
introduced in the 70s to quantify software complexity. Two such sets of metrics
are McCabe complexity metrics and Halstead software science metrics.

Halstead metrics
Maurice Halstead defined a set of metrics based on the idea that a program
or module could be regarded as a sequence of tokens, i.e. a sequence of op-
erators and operands [122]. Based on the counts of these tokens, he specified
a number of derivative measures which are sometimes referred to as ‘software
science’ metrics. In constructing these metrics, Halstead drew upon insights
from cognitive psychology research by taking the mental abilities of the human
brain into account. His work has been criticized for several reasons, including
for not defining a clear and consistent counting strategy of the number of to-
kens and for issues with the unit of measurement of several derived metrics [3].
Despite these drawbacks, Halstead metrics remain commonly used by software
engineering practitioners [317].

McCabe metrics
Thomas McCabe regarded program complexity from a different perspective, re-
lating program complexity to the number of linearly independent paths through
a program. Hereto, a program or module is mapped to a flowgraph, where each
node corresponds to a block of code where the flow is sequential and the arcs
correspond to branches in the program. An often used McCabe metric is the
well known cyclomatic complexity, v(G), which is calculated as v(G) = e−n+1.
e represents the number of edges herein while n stands for the number of nodes
in the flow chart.

Note that static code features are known to be correlated; previous work
examining such features found that these could be grouped into four categories
[202]. A first category related to metrics derived from flowgraphs (i.e. McCabe
metrics) while a second category contained metrics related to the size and item
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count of a program. The two other categories represented different types of
Halstead metrics, motivating our selection of static code features.

Furthermore, an extract of the Git repository was directly obtained from the
Android developers website in April 20124, which was parsed into a database,
adopting a similar approach as followed by Fisher et al. [99]. The commit
messages served as input to a text matching procedure to label source files as
faulty or not. Note that Git utilizes a SHA1 hash to uniquely identify commits,
motivating the addition of the last clause to remove incorrect bug referrals. The
regular expressions we adopted, together with some examples in italics, are as
follows:

– http://b/\d+

http://b/123

– http://b/issue\?id=\d+

http://b/issue?id=123

– http://code.google.com/p/android/detail\?id=\d+

http://code.google.com/p/android/detail?id=123

– bugi?d?\s*\#?:?=?\s*\d+[ˆ a-zA-Z]\>
bug: 123, bugid = 123

– fixe?d?\s*\#?\[?:?=?\s*\d+[ˆ a-zA-Z]\>
fix: 123, fixed = 123

– issue\s*\#?:?=?\s*\d+[ˆ a-zA-Z]\>
issue: 123, issue = 123

Table 6.4 provides a per project fault ratio in the top panel, and aggregate
observation counts and fault ratios in the bottom panel. When compared to the
collection effort of Zimmermann et al. [345], who reported fault ratios around
10 to 15%, and those reported as part of the NASA MDP programme (from
0.5% up to 32%, see e.g. [231]), it can be concluded that the reported fault
ratios are in the same range.

6.2.3 Overview of the Android data

The left panel of Table 6.2 provides an overview of the number of commits and
contributors in each of the releases, assuming a 6 months pre-release period;
the right panel shows the number of contributors shared amongst projects. It
can be seen that Frameworks/base is the project to which the most commits
are made, totalling over 15,000 commits or more than 3,000 per release, while
Dalvik, a virtual machine to compile apps to byte code prior to execution, is
the most stable. This becomes even more apparent when considering only java
source files, see Fig. 6.2, showing that a considerable fraction of source files was
changed at least once in Frameworks/base, while, typically, between 10% and
30% of the source files were modified in all other projects. Note that the SDK
only has become available after the Eclair release. Fig. 6.2 finally also indicates

4http://developer.android.com/index.html
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Eclair Froyo Gingerbread Icecream sandwich Number of shared contributors

Projects Contr. Commits Contr. Commits Contr. Commits Contr. Commits Dalvik Framew. Libcore SDK

Dalvik 28 244 24 334 29 528 18 174 73 50 36 19

Frameworks 163 4,070 194 3,336 237 4,774 224 4,624 9.5% 506 73 50

Libcore 20 210 29 497 28 606 21 289 29% 12.3% 87 19

SDK 17 447 18 306 20 446 24 718 14% 8.5% 11.2% 82

Table 6.2: Android change activity information
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Figure 6.2: Android code base

the total number of source files in each project and for each release. Observe
that a minority of source files could not be mined which was typically caused
by files being empty or containing syntactic irregularities.

6.3 Empirical setup

6.3.1 Machine Learning techniques

As indicated in Chapter 4, a large number of classification techniques have been
adopted in the field of software fault prediction, and also alternatives such as
unsupervised and semi-supervised learning have been considered. This case
study again considers the techniques presented in Chapter 5 with the exception
of LS-SVM, as it includes a computationally very intensive simulated anneal-
ing parameter tuning step. On the other hand, the oblique classifier 1 (OC1)
and rotation forest, which presents itself as an extension to random forest, are
added. Fig. 6.3 provides an overview of the different learners; some exhibit
adjustable hyperparameters which are tuned optimizing the AUC using a grid
search procedure.
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LOC based metrics Handle Calculation

Total number of lines nl

LOC Blank BLOC

LOC Comment CLOC

LOC Excecutable SLOC nl-BLOC-CLOC

McCabe metrics

Cyclomatic Complexity v(G)

Cyclomatic Density vd(G)

Decision Density dd(G) Cond C
Dec C

Norm Cyclomatic Compl Norm v(G) v(G)
nl

Halstead metrics

Num Operators N1

Num Operands N2

Num Uniq Operators n1

Num Uniq Operands n2

Vocabulary C n1 + n2

Length N N1 + N2

Difficulty D n1×N2

2×n2

Level L 1
D

Volume V N×log2(n1 + n2)

Programming Effort E D×V

Programming Time T E
18

Error Estimate B V
3000

Content I V
D

Miscellaneous metrics

Branch Count Branch C

Condition Count Cond C

Decision Count Dec C

Table 6.3: Overview of data set attributes

Eclair Froyo Ginger-
bread

Icecream
sandwichProjects

Dalvik 0.2% 0.4% 3.4% 0%

Frameworks 18.5% 36.2% 24.1% 11.9%

Libcore 7.3% 7.5% 40% 2.7%

SDK N/A 4.3% 6% 6%

Obs. count 4,388 5,622 4,883 5,753

Fault ratio 11.7% 17% 26.6% 6.1%

Table 6.4: Overview of fault ratios
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Oblique classifier 1

Arguably, univariate decision tree learners are amongst the most popular tech-
niques in software defect prediction thanks to their comprehensibility, see e.g.
[173]. However, in Chapter 5, they were found to be outperformed at the 1%
level on the MDP◦ data, a finding which was also echoed on the MDP⋆ data,
while multivariate linear models boosted better performance. As such, multi-
variate decision tree algorithms which generate a tree that considers multiple
attributes at each split are believed to offer a valuable avenue to reconcile per-
formance and comprehensibility [145]. One example of such multivariate (also
referred to as oblique) decision tree learner is oblique classifier 1 (OC1). This
technique was already introduced in Section 2.4.5, and further details can also
be found in Murthy et al. [243].

Rotation forest

Key to the success of random forest is the randomness introduced by the bagging
procedure and the repeated selection of a random attribute subset during the
construction of the forest of univariate decision trees. Rotation forest combines
the idea of pooling a large number of decision trees built on a subset of the
attributes and data, with the application of principal component analysis prior
to decision tree building, explaining its name. Rotating the axes prior to model
building was found to enhance base classifier accuracy at the expense of losing
the ability of ranking individual attributes by their importance [268]. Another
dissimilarity to random forest lies in the selection of base classifiers, C 4.5 instead
of CART, as the first was found to be the better performing of the two, see Table
5.5.

6.3.2 Classifier evaluation

Several metrics have been introduced in the domain of software fault prediction,
including those which operate by imposing a specific threshold on the scores out-
putted by the learners. By adjustment of this threshold, alternative conclusions
can be reached on the relative performance of learners, often rendering their
use somewhat arbitrary. Table 2.3 already provided an exhaustive overview of
classifier evaluation in this domain and hinted at the momentum which is being
gained by threshold independent metrics such as the AUC, Alberg diagrams or
the H-measure. Throughout this chapter, the AUC is adopted to accommodate
this evolution; the AUC has been detailed in Section 2.4.5.

When comparing learners on a single data set, a randomized 10 fold cross
validation setup is used, while in case of cross release validation, models are
built on all available data of the previous release and validated on the data
pertaining to the release under investigation.
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Supervised machine learning

ML based algorithms

Decision trees

CART

Class. and regr. tree

OC1

Oblique classifier 1

ADT

Alternating decision tree

C4.5

Perceptron based models

VP

Voted perceptron

MLPa

Multilayered perceptrons

RBF net
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. . .

. . .

X

X
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a Two multi-layer perceptron learning schemas were con-

sidered;MLP1 refers to the case where the neural network

has been trained with a weight decay penalty to prevent

overfitting whereas MLP2 employs a Bayesian learning

paradigm.
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Figure 6.3: Overview of techniques used in this study

185



6.3.3 Statistical tests

The non parametric framework described in Chapter 5 is again adopted in this
study; this framework consists of a Davenport-Iman test to assess whether there
are any differences between treatments, paired with a post hoc Rom test compar-
ing each treatment to a control treatment upon rejection of the null hypothesis
of equal performance.

Two factors are of interest in this study: the type of classifier and the use
of data from a different release. When investigating the type of classifier, the
number of treatments k equals 24, while the number of test attempts P equals
4; otherwise, k is two while P equals 24 × 3. Note that Lehman advised the
inequality k×P > 30 to allow for meaningful statistical inferencing, a criterion
which is satisfied in both cases [199].

6.4 Results

0 5 10 15 20

LP

VP

K*

NB

SVM

L−SVM

QDA

CART

OC1

MLP1

LDA

Knn

RVM

RBF net

Lars

C4.5

GeneralBN

TAN

LogReg

MLP2

ADT

RotFor

LMT

Figure 6.4: Bonferroni-Rom test

Random forest (RndFor) was found to be the best performing technique,
closely followed by a number of other techniques, including LMT, RotFor, ADT
and MLP2. In a first step, a Davenport-Iman test is performed, finding that the
null hypothesis of equal performing techniques is strongly rejected (p < 10−10).
Thus, we can proceed with the post hoc Rom test which compares the single
best performing technique with all other techniques, Fig. 6.4. The average ranks
(AR) as calculated by the Davenport-Iman test are given on the horizontal axis
while the full vertical line represents the AR of the best technique (RndFor). The
AR of other techniques are represented by dots. If a dot is located in the darker
(lighter) shaded areas, it is not found to be outperformed by RndFor at 5%
(1%). To a large extent, these findings are in line to those presented in Chapter
5. This recurrence adds to our believe that some learners are more fit to serve
as an underpinning to software fault prediction models. Note that techniques as
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Figure 6.5: Cross release validation

RndFor can result in arbitrary and highly flexible decision boundaries, and as
such can be regarded as an incarnation of the idea of local learning put forward
by Menzies et al. who states that ‘what appears to be useful in a global context
is often irrelevant for particular local contexts.’ [228].

Fig. 6.5 provides the cross release results; each technique is represented by
two dots, giving its median performance when applying randomized 10 fold cross
validation and cross release validation. A red (green) arrow is drawn between
these points if a drop (increase) in performance is observed with respect to the
ordinary cross validation setup. The median across all techniques is given by the
full vertical line in case of the cross validation and the dashed line otherwise. The
Davenport-Iman test is found to reject the null hypothesis of equal performance
at 5% (p = 2.2×10−5). While most techniques perform worse, e.g., NB and
L-SVM are found to be better performing in an out-of-release setting. Due
to the limited number of observations (data sets) per technique, no statistical
validation can however be provided on a per technique level. Note that also
other research has found that using e.g., cross company (out of universe) and
out-of-time models are able provide upfront defect predictions [251,317]; Section
2.3.2 recounts further details hereon.
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6.5 Conclusion

In this study we first detailed the extraction process by which we obtained the
data drawn upon in the rest of this chapter. Given the similarities in structure
across software repositories, we believe the guidelines set forth in this part can
serve as an underpinning to other researchers as well.

Next, the Android data was used to investigate the possibility to adopt a
cross release validation schema. It is found that, while a significant performance
penalty is incurred, such approach is feasible in case of insufficient data; when
sufficient data on the current release is available, other approaches are to be pre-
ferred. These promising results open up avenues for further research, extending
the scope to other software applications.
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Intellectuals solve problems, ge-
niuses prevent them.

Albert Einstein, 1879–1955 7
Conclusion

Software has become evermore prevalent over the past 60 years and also its devel-
opment changed tremendously; it suffices to read Boehm’s paper on the evolution
of software engineering practices to appreciate this fact [36]. Despite the shift
towards more formal development processes observed during the 70s exemplified
by the introduction of the waterfall development methodology and formal code
checkers, the productivity enhancing changes of the 80s, including 4th generation
programming languages and software factories, and the more recent proposals
such as agile development methodologies and the service oriented programming
paradigm, it is a recurring finding that software development remains troubled by
cost overruns and schedule slippage. The bi-annual Chaos reports which provide
a current state of affairs of the domain of software development underpin this
conjecture and researchers and practitioners joined efforts in addressing these
issues. In Belgium, the quintessential failed software project is ‘Feniks’, which
would bring the judicial apparatus to 21st century standards, but a plethora of
other failed or challenged projects can be found worldwide. This dissertation
discussed two key topics in the field of empirical software engineering, software
effort and software fault estimation, in an attempt to persuade the reader of
their criticality, offering valuable contributions to the current state of the art in
both domains.

7.1 Thesis contributions

Software effort estimation

In a first part, we look into the enigma of software project planning. Despite
our ever growing experience in, and the many approaches proposed to estimate
total development effort, including expert opinion, formal models, and machine
learning, it remained unclear which should be preferred. Academic papers and
industry reports alike typically involve only a limited set of techniques on one or
a few, sometimes proprietary, data sets and, as is indicated by Kitchenham, ‘one
of the main problems with evaluating techniques on one or two data sets is that
no one can be sure that the specific data sets were not selected because they are
the ones that favor the new technique’ [177]. Also the usage of non standard
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evaluation procedures hampers the generalizability of these studies. In Chapter
3, we try to close this loophole in the literature by reporting our findings of a
large scale benchmarking study on 9 data sets collected from public archives
and industry partners. We investigated the software effort estimation and ma-
chine learning literature, and made an extensive selection of machine learning
techniques corresponding to different types of learning behavior. Secondly, we
contemplated that comprehensibility could be of key importance when deploy-
ing machine learning models in a software production environment. As such,
more succinct models were investigated by adopting a generic backward wrapper
procedure which effectively removed correlated, noisy or irrelevant attributes.

Software fault estimation

As motivation to our second part, we point out that software verification and
validation (V&V) procedures can take up to 60% of the total development bud-
get. Machine learning models can be introduced to pinpoint fault prone regions
in the code base, significantly cutting down V&V expenses. Chapter 4 discusses
the current state of the literature, and identifies bayesian models, and the naive
bayes learner in particular, as one of the most commonplace learners. Other
bayesian learners however boost additional advantages and thus deserve our
attention. Furthermore, it is conjectured that the development environment
should be considered during model selection. One way is to favor a specific
score threshold, trading sensitivity to specificity. However, drawing upon the
recently introduced H-measure, this can be done more elegantly by specifying a
cost distribution.

Software engineering data sets can be difficult and time consuming to col-
lect; e.g. the Cocnasa data set presented in chapter 3 is the result of a million
dollar attempt of the NASA to come up with an in-house variant of the cocomo
model, but can be summarized in a csv file weighting only kilobytes. As such,
many researchers opt to draw upon public data repositories. The commonplace
usage of these public data sources comes however at the risk of repository over-
fitting, where reported improvements are only valid for these specific data sets.
Moreover, recent iconoclastic work pointed out several potential shortcomings in
these public data sources, questioning prior work. In Chapter 5, we answer the
call of Gray et al. [117] concerning the data quality issues found in the NASA
MDP data sets by revisiting the influential study of Lessmann et al. [200].

In a final chapter on software fault prediction, Chapter 6, we look into the
issue of cross release validation, utilizing data from consecutive releases to learn
and validate fault prediction models. Hereto, the historic development archives
of the Android platform are mined and analyzed, drawing upon the updated
evaluation framework laid out in previous chapters. Additionally, several new
and promising techniques are pitched against each other.
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Eclipse 2.0 2.1 3.0

Technical network

# files 6,262 7,388 10,042

# links 75,800 94,612 118,014

density 0.39% 0.35% 0.23%

Logical network

# files 6,729 7,888 10,593

# links 5,325,404 4,021,494 2,669,610

density 23.5% 12.9% 4.8%

# links<50 482,452 507,734 408,716

density 2.13% 1.63% 0.73%

Figure 7.1: Mining the Eclipse code base for network based learning

7.2 Issues for future research

While several topics were discussed throughout this text, the domain of empiri-
cal software engineering can hardly be called quiescent and a multitude of other
questions remain to be asked. Providing an exhaustive list of outstanding issues
is a difficult, if not impossible, task as one always underestimates the creativity
of others and the rapid evolution iconic to the domain of computers1. Yet, the
following paragraphs discuss a number of topics deemed promising avenues for
future research.

A first aspect requiring further inquiry is the aspect of comprehensibility.
While addressed to a certain extent in this text, comprehensibility is believed
to assuage any preoccupations against the introduction of machine learning in
a software development environment. More specifically, given the performance
and black box nature of the random forest ensemble learner, methods to counter
the opaqueness of such models deserve our attention. A pedagogical rule extrac-
tion approach such as ALPA (Active Learning-based Pedagogical Rule Extrac-
tion) presents itself as a perfect candidate hereto [167]. Note that while random
forest has, to the best of our knowledge, not been adopted to software effort
estimation, recent work did discuss ensemble learning with promising results
[182]. As such, we foresee also possible applications in this domain.

A second line of thought concerns the adoption of network based learning
in the domain of software fault prediction. Traditional machine learning tech-
niques treat observations as being independent, inferring class membership on
an observation-by-observation basis. By contrast, network based learning ac-
counts for the possibility that the class membership of one observation depends
on the class membership of neighboring observations. Prior research already
highlighted the benefits offered by propositionalisation, and adopting a network
learning approach such as outlined by Macskassy et al. [213] is a logical next
step as higher order effects can be incorporated. During this dissertation, net-

1For example, in the 80’s, Bill Gates allegedly said that 640 kilobytes of memory ought to
be enough for anybody; currently, we count in gigabytes, if not more.
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worked data have already been collected using Structure1012, and can readily
be paired with traditional, ‘local’ data, rendering this research topic more con-
crete. Specifically, the Eclipse code base, see Fig. 7.1, and the Android platform
have already been mined. Technical networks refer to networks constructed by
tracing calls between classes while logical networks are networks in which the
presence of edges indicate whether files have been jointly modified during a 6
month time span prior to release. The jointly modification of an exceedingly
large number of files might indicate e.g. a code dump, and not refer to the
actual development process. Thus, links<50 refers to the situation in which
commits changing more than 50 files are not considered. Network densities are
also presented, and it can be seen that our networks are densely connected,
especially compared to e.g. networks of telco operators [324].

A final aspect deemed well worth visiting is that of more end-user driven
evaluation metrics; statistical evaluation metrics such as the AUC are com-
monly used, but fail to take the specifics of the fault prediction domain into
account. Aspects such as project environment, discussed in Chapter 4, and size
of individual software modules should also be taken into consideration, and a
first step has been made by Mende et al. [226]. Academia should strive to
quantify the value of fault prediction models in business terms, which was also
advocated by Briand et al. [47]; examples of such approach in the domain of
e.g. telco churn can be found in Verbeke et al. [323].

2www.structure101.com
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A
Details data selection

Chapter 3 discussed a large scale study revolving around the question of how to
accurately estimate software development effort. More specifically, Section 3.4.2
detailed a set of data preprocessing rules; the application hereof on the largest
software effort estimation data set, the ISBSG R11 data set, is illustrated below.

Details original data set Details preprocessed data set

# Observations 5,052 # Observations 1,160

# Attributes 115 # Attributes 14

Attributes selection guidelines:

• Only attributes pertaining to software development are retained (i.e. at-
tributes referring to software quality and software productivity are re-
moved).

• Remove attributes counting towards a global attribute such as

– value adjustment factor,

– sizing attributes used in obtaining function point count.

• Remove attributes that are unknown at the moment of estimation such as
project duration.

• Remove attributes with more than 25% missing values, such as

– Software process CMMI: 97% missing,

– 2nd programming language: 96% missing,

– Package customization: 44% missing.

Observation selection guidelines:

• Projects are retained with an overall data quality rating of A or B. B
quality is defined as ‘The submission appears to be fundamentally sound
but there are some factors which could affect the integrity of the submitted
data’.
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• Retained projects with function point quality of A. B quality label indi-
cates that ’the unadjusted function point count appears sound, but in-
tegrity cannot be assured since a single figure was provided’. This is
potentially more problematic than a B rating for overall quality as size
attributes are typically the most predictive attributes.

• Retained projects of which the function points are counted using the IF-
PUG 4 standard, as indicated in the ISBSG guidelines: ‘You shouldn’t
mix pre-IFPUG V4 projects with V4 and post V4 (the sizing changed
with that release)’.

• Retained projects of which effort refers to resource level 1 (i.e. only de-
velopment team effort included).

• Retained projects with no missing value for categorical attribute ‘primary
programming language’ as only 13% of the observations have a missing
value for this attribute.

Missing value handling

• Median value imputation for variable ‘Team size’. The imputed value is
‘6’.

Dummy encoding

• Dummy encoding nominal attributes

– Development
type

– Organization
type

– Business area
type

– Application type

– Architecture

– Development
technique

– 1st Database
system

– Platform

– Language type

– Primary
programming
language

– 1st Hardware

– 1st Operating
system
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[108] S. Garćıa, A. Fernández, J. Luengo, and F. Herrera. Advanced nonpara-
metric tests for multiple comparisons in the design of experiments in com-
putational intelligence and data mining: Experimental analysis of power.
Information Sciences, 180(10):2044–2064, 2010.

[109] A. Giangreco, A. Carugati, and A. Sebastiano. Are we doing the right
thing? Food for thoughts on training evaluation and its context. Personnel
Review, 39(2):162–177, 2010.

206



[110] A. Giangreco, A. Sebastiano, and R. Peccei. Trainees’ reactions to train-
ing: An analysis of the factors affecting overall satisfaction with training.
The International Journal of Human Resources Management, 20(1):96–
111, 2009.

[111] S. Goedertier, J. De Weerdt, D. Martens, J. Vanthienen, and B. Baesens.
Process discovery in event logs: An application in the telecom industry.
Applied Soft Computing, 11(2):1697–1710, 2011.

[112] S. Gokhale. Architecture-based software reliability analysis: Overview and
limitations. IEEE Transactions on Dependable and Secure Computing,
4(1):32–40, 2001.

[113] I. Gondra. Applying machine learning to software fault-proneness predic-
tion. Journal of Systems and Software, 81:186–195, 2008.
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